

CACORE EVS API 4.0

TECHNICAL GUIDE

Center for Bioinformatics

January 28, 2008 This is a U.S. Government Work

 i

Credits and Resources

caCORE EVS Development
and Management Teams

Development Technical Guide Program Management

Johnita Beasley1 Johnita Beasley1 Bill Britton7

Steve Hunter4 Wendy Erickson-Hirons3 Peter Covitz2

Norval Johnson7 Frank Hartel2 Frank Hartel2

Sriram Kalyanasundaram7 Shaziya Muhsin1 Charles Griffin4

Doug Kanoza7 Kim Ong5 Jason Lucas5

Alan Klink7 Konrad Rokicki1 Krishnakant Shanbhag2

Shaziya Muhsin1 Tracy Safran1 Denise Warzel2

Kim Ong5

John Park6

Konrad Rokicki1

Tracy Safran1

Ye Wu1

Robert Wynne6

Robert Wysong7

David Yee5

1 Science Application International Corporation
(SAIC)

3 ScenPro, Inc.

2 National Cancer Institute Center for
Bioinformatics (NCICB)

4Ekagra

5Northrup-Grumman

6Lockeed Martin

7Terpsys

caCORE EVS API 4.0 Technical Guide

ii

Contacts and Support

NCICB Application Support http://ncicb.nci.nih.gov/NCICB/support

Telephone: 301-451-4384

Toll free: 888-478-4423

LISTSERV Facilities Pertinent to the caCORE EVS

LISTSERV URL Name

NCI EVS Listserv https://list.nih.gov/archives/ncievs-l.html NCI Vocabulary
Services
Information

caCORE_SDK_
Developers

https://list.nih.gov/archives/cacore_sdk_dev-
l.html

caCORE SDK
Developers
Discussion Forum

caCORE_SDK_
Users

https://list.nih.gov/archives/cacore_sdk_users-
l.html

caCORE SDK
Users Discussion
Forum

Release Schedule

This guide has been updated for the caCORE EVS 4.0 release. It may be updated between
releases if errors or omissions are found. The current document refers to the 4.0 version of
caCORE EVS, released in November 2007 by the NCICB.

 iii

Table of Contents

Chapter 1 Using This Guide ... 1

Purpose ... 1
Release Schedule .. 1
Audience.. 1
Additional caCORE Documentation .. 2
Organization of This Guide... 2
Document Text Conventions .. 2

Chapter 2 Enterprise Vocabulary Services and LexBIG .. 5

Introduction .. 5
The UMLS Metathesaurus.. 5
Knowledge Representation and Description Logic .. 7
Description Logic.. 9

Concept Edit History in the NCI Thesaurus..11
Downloading the NCI Thesaurus ...12

OWL Encoding of the NCI Thesaurus ... 14
Ontylog Name Conversion.. 15

Ontylog Mappings ...16
Mapping of Gene Ontology to Ontylog.. 16
Mapping of MedDRA to Ontylog ... 18
Mapping of MGED Ontology to Ontylog .. 19

LexBIG..21

Chapter 3 Overview to caCORE ...23

Architecture Overview ...23
Components of caCORE ...24

Enterprise Vocabulary Services (EVS).. 24
Cancer Data Standards Repository (caDSR) .. 24
Cancer Bioinformatics Infrastructure Objects (caBIO) ... 24
Common Security Model (CSM) ... 24
Common Logging Module (CLM).. 24

Chapter 4 caCORE EVS Architecture ...27

caCORE EVS System Architecture..27
Client Technologies...28
caCORE EVS Software Packages...29

System... 29

Chapter 5 Interacting with caCORE EVS ...31

caCORE EVS Components ...31
EVS 3.2 Object Model ...33

EVS 3.2 Domain Object Catalog... 34

caCORE EVS API 4.0 Technical Guide

iv

EVS Data Sources ..35
EVS 3.2 Java API..35

Installation and Configuration ... 35
Installation Verification: A Simple Example ... 38

Search Paradigm ..40
EVSQuery and EVSQueryImpl ..41
EVSQuery Methods and Parameters...41
Accessing Secured Vocabularies...43
Examples of Use ...43

Example One: Search for DescLogicConcepts by Term.. 43
Example Two: Search MetaThesaurusConcepts by Atom... 44

Web Services API ...46
Configuration.. 47
Operations ... 47
Considerations ... 48
Examples of Use .. 49
Limitations.. 52

XML�HTTP API..52
Service Location and Syntax .. 52
Examples of Use .. 54
Working With Result Sets... 54

Utility Methods...56
XML Utility.. 56

Distributed LexBIG API..58
Overview.. 58
Architecture.. 58
LexBIG Annotations ... 59
Aspect Oriented Programming Proxies ... 59
LexBIG API Documentation.. 60
LexBIG Installation and Configuration... 60
Example of Use.. 60

Distributed LexBIG Adapter ...63
Example of Use.. 63

Appendix A References ...69

Articles..69
caBIG Material ..69
caCORE Material ..69
Software Products...69

Appendix B Additional Examples ...71

Find Tree For Concept and Association...71
Search MetaThesaurus for a Particular Concept/Search Term...74

 v

Glossary ...77

Index ..81

caCORE EVS API 4.0 Technical Guide

vi

 1

Chapter 1 Using This Guide

This chapter introduces you to the caCORE EVS Technical Guide.

Topics in this chapter include:

• Purpose on this page
• Release Schedule on this page
• Audience on this page
• Additional caCORE Documentation on page 2
• Organization of This Guide on page 2
• Document Text Conventions on page 2

Purpose
The caCORE EVS API 4.0 Technical Guide describes the Enterprise Vocabulary Services
(EVS) component of the Cancer Common Ontologic Representation Environment
(caCORE). caCORE is an open-source standards-based semantics-computing environment
and tool set created by the National Cancer Institute (NCI) Center for Biomedical Informatics
and Information Technology (CBIIT). EVS is a set of services and resources that address
the NCI's needs for a controlled vocabulary. It provides the semantic base upon which the
data semantics of caCORE depend.

This guide describes:

• the purpose, architecture and components of caCORE EVS.
• the APIs for accessing the caCORE EVS system including Java, Web services, and

XML-HTTP.
• the API providing direct remote access to the native LexBIG Service Layer.
• an overview of UML.

Release Schedule
This guide is updated for each caCORE EVS release. It may be updated between releases if
errors or omissions are found. The current document refers to the 4.0 version of caCORE
EVS, which was released in November 2007 by the NCI CBIIT (formerly the National Cancer
Institute Center for Bioinformatics (NCICB).

Audience
The primary audience of this guide is the application developer who wants to learn about the
architecture and use and/or access the caCORE EVS APIs. caCORE EVS is generated
using the caCORE Software Development Kit (SDK). For more information, see the
caCORE SDK 4.0 Developer’s Guide. This guide assumes that you are familiar with the
Java programming language and/or other programming languages, database concepts, and
the Internet. If you intend to use caCORE EVS resources in software applications, it
assumes that you have experience with building and using complex data systems. Neither
caCORE EVS nor this documentation is intended for "end" users, such as individual health

caCORE EVS API 4.0 Technical Guide

2

professionals or members of the general public, unless they are also software developers.

Additional caCORE Documentation
• The caCORE EVS 4.0 Release Notes contain a description of the end user tool

enhancements and bug fixes included in this release.
• The caCORE EVS 4.0 JavaDocs contain the current caCORE EVS API specification.
• The caCORE SDK 4.0 Developer’s Guide contains detailed instruction on the use of the

SDK and how it aids in creating a caCORE-like software system.

Organization of This Guide
This brief overview explains what you will find in each section of this guide.

• Chapter 1, this chapter, provides an overview of this guide.

• Chapter 2 provides an overview of the Enterprise Vocabulary Services (EVS) project.
• Chapter 3 provides an overview of the NCICB caCORE infrastructure.
• Chapter 4 describes the architecture of the caCORE EVS.
• Chapter 5 describes the caCORE EVS API, the service interface layer provided by the

EVS API architecture and gives examples of how to use the EVS API. It also describes
the distributed LexBIG API.

• Appendix A provides a list of references used to produce this guide or referred to within
the text.

• Appendix B provides two additional code examples.

Document Text Conventions
The following table (Table 1-1) shows various typefaces to differentiate between regular text
and menu commands, keyboard keys, tool bar buttons, dialog box options, and text that you
type. This illustrates how text conventions are represented in this manual:

Convention Description

Notes Notes: Notes are enclosed for emphasis

Bold Bold type is used for emphasis, buttons, or tabs to select on
windows, and names of dialog boxes.

TEXT IN SMALL CAPS TEXT IN SMALL CAPS is used for keyboard keys that you press
(for example, ALT+F4)

Text in italics Italics are used to reference other documents, sections, figures,
and tables.

Special typestyle Special typestyle is used for filenames, directory names,
commands, file listings, and anything that would appear in a Java
program, such as methods, variables, and classes.

 Chapter 1 Using This Guide

 3

Convention Description

Bold italics
typestyle

Bold italics is used for information the user needs to enter

{ } Curly brackets are used for replaceable items (for example,
replace {home directory} with its proper value such as
C:\caadapter).

Table 1-1 Document text conventions

caCORE EVS API 4.0 Technical Guide

4

 5

Chapter 2 Enterprise Vocabulary Services and LexBIG

This chapter provides an overview of the Enterprise Vocabulary Services (EVS) project.

Topics in this chapter include:

• Introduction on this page
• Concept Edit History in the NCI Thesaurus on page 11
• Downloading the NCI Thesaurus on page 12
• Ontylog Mappings on page 16
• LexBIG on page 21

Introduction
The Enterprise Vocabulary Services (EVS) project is a collaborative effort of the NCI Center
for Bioinformatics (NCICB) and the NCI Office of Communications. Controlled vocabularies
are important to any application involving electronic data sharing. Two areas where the need
is perhaps most apparent are clinical trials data collection and reporting and more generally,
data annotation of any kind. The NCI Thesaurus is a biomedical thesaurus developed by
EVS in response to a need for consistent shared vocabularies among the various projects
and initiatives at the NCI as well as in the entire cancer research community. The EVS
project also produces the NCI Metathesaurus, which is based on NLM's Unified Medical
Language System Metathesaurus (UMLS) supplemented with additional cancer-centric
vocabulary.

A critical need served by the EVS is the provision of a well-designed ontology covering
cancer science. Such an ontology is required for data annotation, inferencing and other
functions. The data to be annotated might be anything from genomic sequences to case
report forms to cancer image data. The NCI Thesaurus covers all of these domains. A few of
the specialties it includes are pertinent to disease, biomedical instrumentation, anatomical
structure, and gene/protein information. The NCI Thesaurus is updated monthly to keep up
with developments in cancer science.

The NCI Thesaurus is implemented as a Description Logic vocabulary and, as such, is a
self-contained and logically consistent terminology. Unlike the NCI Thesaurus, the purpose
of the NCI Metathesaurus is not to provide unequivocal or even necessarily consistent
definitions. The purpose of the NCI Metathesaurus, like the UMLS Metathesaurus, is to
provide mappings of terms across vocabularies. The caCORE EVS interfaces, discussed
later in this guide, provide access to both the NCI Thesaurus and the NCI Metathesaurus.

In the following sections, a brief overview of the UMLS Metathesaurus is provided, upon
which the NCI Metathesaurus is based. This is followed by a short discussion of description
logic, its role in the area of knowledge representation, and its implementation in the NCI
Thesaurus.

The UMLS Metathesaurus

The NCI Metathesaurus is based on the UMLS Metathesaurus, supplemented with
additional cancer-centric vocabulary. Excellent documentation on the UMLS is available at
the UMLS Knowledge Sources web site.

caCORE EVS API 4.0 Technical Guide

6

A brief overview of the UMLS Metathesaurus is included here, but it is strongly
recommended that users who wish to gain a deeper understanding refer to the above web
site. Only those features of the UMLS Metathesaurus that are relevant to accessing the NCI
Metathesaurus are described here.

The UMLS Metathesaurus is a unifying database of concepts that brings together terms
occurring in over 100 different controlled vocabularies used in biomedicine. When adding
terms to the Metathesaurus, the UMLS philosophy has been to preserve all of the original
meanings, attributes, and relationships defined for those terms in the source vocabularies,
and to retain explicit source information as well. In addition, the UMLS editors add basic
information about each concept and introduce new associations that help to establish
synonymy and other relationships among concepts from different sources.

Given the very large number of related vocabularies incorporated in the Metathesaurus,
there are instances where the same concept may be known by many different names, as
well as instances where the same names are intended to convey different concepts. To
avoid ambiguity, the UMLS employs an elaborate indexing system, the central kingpin of
which is the concept unique identifier (CUI). Similarly, each unique concept name or string in
the Metathesaurus has a string unique identifier (SUI).

In cases where the same string is associated with multiple concepts, a numeric tag is
appended to that string to render it unique as well as to reflect its multiplicity. In addition, the
UMLS Metathesaurus editors may create an alternative name for the concept that is more
indicative of its intended interpretation. In these cases, all three names for the concept are
preserved.

Several types of relationships are defined in the UMLS Metathesaurus, and four of these are
captured by the NCI Metaphrase interface:

• Broader (RB) - The related concept has a more general meaning.
• Narrower (RN) - The related concept has a more specific meaning.
• Synonym (SY) - The two concepts are synonymous.
• Other related (RO) - The relationship is not specified but is something other than

synonymous, narrower or broader.

The UMLS Semantic Network is an independent construct whose purpose is to provide
consistent categorization for all concepts contained in the UMLS Metathesaurus, and to
define a useful set of relationships among these concepts. As of the 2005AC release, the
Semantic Network defined a set of 135 basic semantic types or categories that could be
assigned to these concepts and 54 relationships that could hold among these types.

The major groupings of semantic types include organisms, anatomical structures, biologic
function, chemicals, events, physical objects, and concepts or ideas. Each UMLS
Metathesaurus concept is assigned at least one semantic type, and in some cases, several.
In all cases, the most specific semantic type available in the network hierarchy is assigned
to the concept.

The NCI Metathesaurus includes most of the UMLS Metathesaurus, with certain proprietary
vocabularies of necessity excluded. In addition, the NCI Metathesaurus includes
terminologies developed at NCI along with external vocabularies licensed by NCI. The local
vocabularies developed at NCI are described in Table 2-1. As noted in the table, a limited
model of the NCI Thesaurus is also accessible via the NCI Metathesaurus, as the NCI
Source. Additional external vocabularies include MedDRA, SNOMED, ICD-O-3, and other
proprietary vocabularies.

 Chapter 2 Enterprise Vocabulary Services and LexBIG

 7

Vocabulary Content Usage

NCI Source Limited model of the NCI
Thesaurus

Reference terminology for cancer research
applications

NCIPDQ Expanded and re-organized
PDQ

CancerLit indexing and clinical trials accrual

NCISEER SEER terminology Incidence reporting

CTEP CTEP terminology Clinical trials administration

MDBCAC Topology and morphology Cancer genome research

ELC2001 NCBI tissue taxonomy Tissue classification for genetic data such as
cDNA libraries

ICD03 Oncology Cancer genome research and incidence
reporting

MedDRA Regulatory reporting
terminology

Adverse event reporting

MMHCC Mouse Cancer Database
terminology

Mouse Models of Human Cancer Consortium

CTRM Core anatomy, diagnosis, and
agent terminology

Translational research by NCICB applications

Table 2-1 NCI local source vocabularies included in the Metathesaurus

Knowledge Representation and Description Logic

Knowledge representation has long been a prime focus in artificial intelligence research.
This area of research asks how one can accurately encode the rich and highly detailed
world of information that is required for the application area being modeled and yet, at the
same time, capture the implicit common sense knowledge. One of the most common
approaches to this problem in the 1970s was to utilize frame-based representations.

The basic idea of a frame is that important objects in our world fall into natural classes, and
that all members of these classes share certain properties or attributes, called slots. For
example, all dogs have four legs, a tail (or vestige of one), whiskers, etc. Restaurants
generally have tables, chairs, eating utensils, and menus. Thus, when we enter a new
restaurant or encounter a new dog, we already have a "frame of reference" and some
expectation about the properties and behaviors of these entities.

In a seminal paper by Marvin Minsky, he placed the frame representation paradigm in the
context of a semantic network of nodes, attributes, and relations. Figure 2-1 shows a simple
frame-based representation of an earthquake, as it might be used in a semantic network of
news stories. 1

1. This example is excerpted from Artificial Intelligence, by Patrick Winston, Addison-Wesley, 1984.

caCORE EVS API 4.0 Technical Guide

8

Figure 2-1 An earthquake in a semantic network of news stories

At the same time that frame-based representations were being explored, a popular
alternative approach was to use (some subset of) first-order predicate logic (FOL), often
implemented as a Prolog program. While propositional logic allows one to make simple
statements about concrete entities, a complete first-order logic allows one to make general
statements about anonymous elements with the introduction of variables as place-holders.
The following example contrasts the difference in expressivity between propositional logic
and FOL:

Propositional Logic First-order Predicate Logic
All men are mortal.

Socrates is a man.

Socrates is mortal.

)(

)()(:

SocratesMan

xMortalxManx →∀

In other words, in FOL it is possible to express general rules of inference that can be applied
to all entities whose attributes satisfy the left-hand side of the inference operator. Thus,
simply asserting Man (Socrates) entails Mortal (Socrates).

Since logic programming is based on the tenets of classical logic and comes equipped with
automated theorem-proving mechanisms, this approach allowed the development of
inference systems whose soundness and completeness could be rigorously demonstrated.
However, while many of these early inference systems were logically sound and complete,
they were often not very useful, as they could only be applied to highly proscribed areas or
"toy problems”. The problem was that a complete first-order predicate logic is itself
computationally intractable, as certain statements may prove not to be decidable.

Suppose for example that we are trying to establish that some theorem, P(x), is true. The
way a theorem prover works is to first negate the theorem and, subsequently, to combine
the negated theorem))((xP¬ with stored axioms in the body of knowledge to show that this
leads to a logical contradiction. Ultimately, when the theorem prover derives the conclusion

)()(xPxP ¬∧ , the program terminates and the theorem is considered proven.

This method of proof by refutation is guaranteed to terminate when it is indeed upheld by the
body of knowledge. The problems arise when the initial theorem is not valid, as its negation
may not produce a logical contradiction, and thus the program may not terminate.

 Chapter 2 Enterprise Vocabulary Services and LexBIG

 9

In contrast, the frame representations offered a rich, intuitive means of expressing domain
knowledge, yet they lacked the inference mechanisms and rigor that predicate logic systems
could provide. As suggested by Figure 2-1, the frame representation captures a good deal of
implicit knowledge. For example, we expect that all disaster events, including earthquakes,
have information about fatalities and injuries and the extent of loss and property damage. In
addition, we expect that these events will have locations, dates, and individuals associated
with them.

Early efforts to apply predicate logic to frame representations in order to make this
information explicit however, soon revealed that the problem was computationally
intractable. This occurred for two reasons: (1) The frame representation was too permissive;
more rigorous definitions were required to make the representation computational; and (2)
the intractability of first-order predicate logic itself.

Several subsets of complete FOL have since been defined and successfully applied to
develop useful computational models capable of significant reasoning. For example, the
Prolog programming language is based on a subset of FOL that severely limits the use of
negation. The family of description logic (DL) systems is a more recent development, and
one that is especially well suited to the development of ontologies, taxonomies, and
controlled vocabularies, as an important function of a DL is as an auto-classifier.

Description Logic

Description logic can be viewed as a combination of the frame-based approach with FOL. In
the process, both models had to be scaled back to achieve an effective solution. Like
frames, the DL representation allows for concepts and relationships among concepts,
including simple taxonomic relations as well as other meaningful types of association.
Certain restrictions however, are placed on these relations. In particular, any relation that
involves class membership, such as the isa or inverse-isa relations, must be strictly acyclic.

The predicate logic used in a description logic system is also limited in various ways,
depending on the implementation. For example, the minimal form of a DL does not allow any
form of existential quantification. This limitation allows for a very easily computed solution
space, but the resulting expressivity is severely diminished. The next step up in
representational power allows limited existential quantification without atomic negation.

Indeed, today there is a large family of description logics that have been realized, with
varying levels of expressivity and resulting computational complexities. In general, DLs are
decidable subsets of FOL, and the decidability is due in large part to their acyclicity. The
theory behind these models is beyond the scope of this discussion, and the interested
reader is referred to The Description Logic Handbook, by Franz Baader, et al. (eds.),
Cambridge University Press, 1993, ISBN number 0-521-78176-0.

The two main ingredients of a DL representation are concepts and roles. A major distinction
between description logics and other subsets of FOL is its emphasis on set notations. Thus
a DL concept never corresponds to a particular entity but rather to a set of entities, and the
notations used for logical conjunction and disjunction are set intersection and union.

DL concepts can also be thought of as unary predicates in FOL. Thus the DL expression
Person ∩ Young can be interpreted as the set of all children, with the corresponding FOL
expression Person(x) /\ Young(x). Syntactically then, DL expressions are variable free, with
the understanding that the concepts always reference sets of elements.

A DL role is used to indicate a relationship between the two sets of elements referenced by

caCORE EVS API 4.0 Technical Guide

10

a pair of concepts. In general, DL notations are rather terse, and the concept (or set of
elements) of interest is not explicitly represented. Thus, to represent the set of individuals
whose children are all female, we would use \/x hasChild.Female. The equivalent expression
in FOL might be something like:

\/x :hasChild(y.x) � female(x)

In terms of set theory, a role potentially defines the Cartesian product of the two sets. Roles
can have restrictions, however, which place limitations on the possible relations. A value
restriction limits the type of elements that can participate in the relation; a number restriction
limits the number of such relations in which an element can participate.

In addition, each role defines a directed relation. For example, if x is the child of y, y is not
also the child of x. In the above example hasChild, the parent concept is considered the
domain of the relation, and the child is considered the range. Elements belonging to the set
of objects defined by the range concept are also called role fillers. Number restrictions apply
to the number of role fillers that are required or allowed in a relation. For example, a parent
can be defined as a person having at least one child:

Person ∩ (child)

A DL representation is constructed from a ground set of atomic concepts and atomic roles,
which are simply asserted. Defined concepts and defined roles are then derived from these
atomic elements, using the set operations of intersection, union, negation, etc. Most DLs
also allow existential and universal quantifiers, as in the above examples. Note, however,
that these quantifiers always apply to the role fillers only.

The fundamental inference operation in DL is subsumption, and is usually indicated with
subset notation. Concept A is said to subsume B, or BA ⊆ when all members of concept B
are contained in the set of elements defined by concept A, but not vice versa. That is, if B is
a proper subset of A, then A subsumes B. This capability has far-reaching repercussions for
vocabulary and ontology developers, as it enables the system to automatically classify newly
introduced concepts. Moreover, correct subsumption inferencing can be highly nontrivial, as
this generally requires examining all of the relationships defined in the system and the
concepts that participate in those relations.

Description Logic in the NCI Thesaurus

The NCI Thesaurus is currently developed using the proprietary Apelon Inc. Ontylog™
implementation of description logic. Ontylog is distributed as a suite of tools for terminology
development, management, and publishing. Although the underlying inference engine of
Ontylog is not exposed, the implementation has the characteristics of what is called an AL-
(Attributive Language) or FL- (Frame Language) description logic. It does not support atomic
negation but does appear to provide all other basic description logic functionality.

The NCI Thesaurus is currently edited and maintained in the Terminology Development
Environment (TDE) provided by Apelon. The TDE is an XML-based system that implements
the DL model of description logic based on Apelon's Ontylog Data Model. The Data Model
uses four basic components: Concepts, Kinds, Properties, and Roles. Use of the Apelon
TDE for editing and maintenance if the NCI Thesaurus will change with the BioMedGT Wiki
and Protégé 1.2 Tool Releases expected in early 2008.

As in other DL systems, Concepts correspond to nodes in an acyclic graph, and Roles
correspond to directed edges defining relations between concept members. Each Concept

 Chapter 2 Enterprise Vocabulary Services and LexBIG

 11

has a unique Kind. Formally, Kinds are disjoint sets of Concepts and represent major
subdivisions in the NCI Thesaurus.

More concretely, Kinds are used in the Role definitions to constrain the domain and range
values for that Role. Each Role is a directed relation that defines a triplet consisting of two
concepts and the way in which they are related. The domain defines the Concept to which
the Role applies, and the Range defines the possible values; in other words, Concepts that
can fill that Role. For example, the Role geneEncodes might have its domain restricted to
the Gene_Kind and its range to the Protein_Kind. This Role then essentially states that
Genes encode Proteins.

As in all DLs, all roles are passed from parent to child in the inheritance hierarchy. For
example, a "Malignant Breast Neoplasm" has the role located-in, connecting it to the
concept "Breast”. Thus, since the concept "Breast Ductal Carcinoma" is-a " Malignant Breast
Neoplasm”, it inherits the located_in relation to the "Breast" concept. These lateral
nonhierarchical relations among concepts are referred to as associative or semantic roles; in
contrast to the hierarchical relations that reflect the is-a roles. In the first-order algebra upon
which Ontylog DL is based, every defined relationship also has a defined inverse
relationship. For example, if A is contained by B, then B contains A. Inverse relationships
are useful and are expected by human users of ontologies. However, they have a
computational cost. If the edges connecting concept nodes are bi-directional, then the
computation quickly becomes intractable. Therefore in the Ontylog implementation of DL,
inverse relationships are not stored explicitly but computed on demand.

Concept Edit History in the NCI Thesaurus
One of the primary uses of the NCI Thesaurus is as a resource for defining tags or retrieval
keys for the curation of information artifacts in various NCI repositories. However, since
these tags are defined at a fixed point in time, they necessarily reflect the content and
structure of the NCI Thesaurus at that time only. Given the rapidly evolving terminologies
associated with cancer research, there is no guarantee that the tags used at the time of
curation in the repository will still have the same definition in subsequent releases of the
Thesaurus. In most cases the deprecation or redefinition of a previously defined tag is not
disastrous, but it may compromise the completeness of the information that can be
retrieved.

In order to address this issue, the EVS team has developed a history mechanism for tracing
the evolution of concepts as they are created, merged, modified, split, or retired. (In the NCI
Thesaurus, no concept is ever deleted.) The basic idea is that each time an edit action is
performed on a concept, a record is added to a history table. This record contains
information about relations that held for that concept at the time of the action as well as
other information, such as version number and timestamp that can be use to reconstruct the
state when the action was taken (Table 2-2).

Column Name Description
History_ID Unique consecutive number for use as the database primary key

Concept_Code The concept code for the concept currently being edited

Action Edit Action: {Create, Modify, Split, Merge, Retire}

Baseline_Date Date of NCI Thesaurus Baseline (see discussion below)

Reference_Code This field contains the concept code of a second concept either
participating in or affected by the editor’s action. Captures critical

caCORE EVS API 4.0 Technical Guide

12

Column Name Description
information concerning the impact of the edit actions on other
concepts. The value will always be null if the action is Create or
Modify.

Table 2-2 Summary of the information stored in the history table

Capturing the history data for a Split, Merge, or Retire action is more complicated. In a Split,
a concept is redefined by partitioning its defining attributes between two concepts, one of
which retains the original concept's code and one that is newly created. This action is taken
when ambiguities in the original concept's meaning require clarification by narrowing its
definition.

In the case of a Split, three history records will be created: one for the newly created
concept, (with a null Reference_Code), and two for the original concept that is being split. In
the first of these two records, the Reference_Code is the code for the new concept; in the
second it is the code of the split concept (Figure 2-2).

Figure 2-2 History records for the split action

For Merge actions, the situation is similar to a Split. In this case, two ambiguous concepts
must be combined, and only one of the original concepts is retained. Again there will be
three history records created: two for the concept that will be retired during the merge, and
one for the "winning" concept. The Reference_Code in the history record for the "winning"
concept will be the same as the Concept_Code; that is, the concept points to itself as a
descendant in the Merge action. The Reference_Code will be null in one of the entries for
the retiring concept, while the second entry will have the code of the "winning" concept; thus,
this Reference column points to the concept into which the concept in the Concept_Code
column is being merged.

Finally, if the action is Retire, there will be as many history entries as the concept has parent
concepts. The Reference column in these entries will contain the concept code of the parent
concepts, one parent concept per history entry. The motivation for this is that end-users with
documents coded by such retired concepts may find a suitable replacement among the
concept's parents at the time of retirement.

The caCORE EVS APIs support concept history queries.

Downloading the NCI Thesaurus
The NCI Thesaurus can be downloaded in a couple of formats, including simple tab-
delimited ASCII format and OWL format (the Web Ontology Language). The ASCII-

 Chapter 2 Enterprise Vocabulary Services and LexBIG

 13

formatted files are available for download at the NCICB download site, as
ThesaurusV2_0Flat.zip and ThesaurusV2_0XML.zip. The OWL formatted version is
available at http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl. Users who prefer to use
FTP for download can go to the caCORE FTP site. The format of the ASCII flat file is
extremely simple. For each concept, the download file includes the following information:

1. The concept code: all terms have the "C" prefix, followed by its integer index;

2. The concept name: this name may contain embedded punctuation and spaces;

3. A pipe-delimited list of parent concepts, as identified in the NCI Thesaurus by isa
relations;

4. A pipe-delimited list of synonyms, the first of which is the preferred name; and

5. One of the NCI definitions for the term-if one exists. Each of these separate types of
information is tab-delimited; within a given category, the individual entries are separated
by pipes ("|"). Only the third and fourth categories, i.e., the parent concepts and
synonyms, have multiple entries requiring the pipe separators. Note that while much of
the information available from the interactive Meta-phrase server is included in the
download, any information outside the NCI Thesaurus description logic vocabulary (e.g.,
Diagnosis, Laboratory, Procedures, etc.) is not.

For example, the flat file download for the term "Mercaptopurine" is as follows:

C6 Mercaptopurine Immunosuppressants|Purine Antagon ists

Mercaptopurine|1,3-AZP|1,7-Dihydro-6H-purine-6-thio ne|3H-

Purine-6-thiol|6

Thiohypoxanthine|6 Thiopurine|6-MP|6-Mercaptopurine |6-

Mercaptopurine

Monohydrate|6-Purinethiol|6-Thiopurine|6-Thioxopuri ne|6H-

Purine-6-thione,

1,7-dihydro- (9CI)|6MP|7-Mercapto-1,3,4,6-

tetrazaindene|AZA|Alti-

Mercaptopurine|Azathiopurine|BW 57-323H|CAS

50442|Flocofil|Ismipur|Leukerin|Leupurin|MP|Mercale ukim|Mercaleukin|Merc

ap|Mercaptina|Mercapto-6-purine|Mercaptopurinum|Mer capurin|Mern|NCI-

C04886|NSC755|Puri-Nethol|Purimethol|Purine-6-thiol (8CI)|Purine-6-thiol

Monohydrate|Purine-6-thiol, Monohydrate|Purinethiol |Purinethol|U-
4748|WR-2785
An anticancer drug that belongs to the family of dr ugs called
antimetabolites.

Users who wish to use an encoded format rather than the simple ASCII form should
download the OWL encoding of the NCI Thesaurus, which is described below.

caCORE EVS API 4.0 Technical Guide

14

OWL Encoding of the NCI Thesaurus

OWL, as specified and proposed by the World Wide Web Consortium (W3C), is an
emerging standard for the representation of semantic content on the web. Building on the
earlier groundwork laid by XML, the Resource Description Framework (RDF) and RDF
schema; and subsequently, by DAML+OIL, OWL represents the culmination of what has
been learned from these previous efforts.

While XML provides surface syntax rules and XML Schema provides methods for validating
a document's structure, neither of these can in itself impose semantic constraints on how a
document is interpreted. RDF provides a data model for specifying objects (resources) and
their relations, and RDF Schema allows one to associate properties with the individual
resources as well as taxonomic relations among the objects. Yet even these extensions
could not provide the breadth and depth of representation needed to encode nontrivial real-
world information. OWL adds vocabulary for describing arbitrary nonhierarchical relations
between classes, cardinality constraints, resource equivalences, richer typing of properties,
and enumerated classes.

A major focus of the W3C is the establishment of the Semantic Web, which is a far-reaching
infrastructure whose purpose is to provide a framework whereby autonomous self-
documenting agents and web services can exchange meaningful information without human
intervention. OWL is the first step towards realizing this vision. Because of collaborative
efforts with Dr. James Hendler and the University of Maryland, the NCI Thesaurus is now
available for download in OWL format; this section describes the mapping of the NCI
Thesaurus to OWL. The mapping of the NCI Thesaurus into OWL format proceeds via the
Ontylog XML elements declared in Apelon's Ontylog DTD. The four basic elements are
Kinds, Concepts, Roles, and Properties, where:

• Kinds are the top-level super classes in the Thesaurus; they enumerate the different
possible categories of all concepts, and include such things as Anatomy, Biological
Processes, Chemicals and Drugs, etc. Each NCI Thesaurus Kind is converted to an
owl:Class.

• An NCI Thesaurus Concept describes a specific concept under one of the Kind
categories. Each NCI Thesaurus Concept is converted to an owl:Class.

• Roles capture how concepts relate to one another. Generally, Roles have restricted
domains and ranges, which limit the sets of concepts that can participate in the Role
according to their categories, for example Kinds. The "defining roles" within a concept
definition provide these local restrictions on the ranges of roles. Each NCI Thesaurus
Role is converted to an owl:ObjectProperty.

• NCI Thesaurus Properties encode the attributes that pertain to a class; they contain
metadata that describes the class, but not its instantiations or subclasses. Each NCI
Thesaurus Property is converted to an owl:AnnotationProperty.

The bulk of the Thesaurus comprises concept definitions; this is also where the most
complex semantics occur. Each concept in the Thesaurus has three main types of
associated data: defining concepts, defining roles, and properties. A "defining concept" is
essentially a super class; the defined concept in OWL has an rdfs:subClassOf relationship to
the defining concept.

The defining roles and properties are mapped as described above; the owl:Annotation-
Property is actually a subclass of rdf:Property, and, like rdfs:comment and rdfs:label, can be
attached to any class, property or instance. This allows properties from the Thesaurus to be
associated directly with a concept's corresponding class, without violating the rules of OWL.

 Chapter 2 Enterprise Vocabulary Services and LexBIG

 15

In addition to any explicitly named properties, each element in the Thesaurus also has a
uniquely defined "code" and "id" attribute associated with it. These are used as unique
identifiers in the Apelon development software, and, as such, are not defined explicitly as
roles or properties. In mapping these identifying attributes to OWL, we have treated these as
special cases of the explicit property elements. Just like other properties in the Thesaurus,
they are mapped as owl:AnnotationProperties. Table 2-3 summarizes the mapping of
elements in the Ontylog DTD to OWL elements.

Ontylog Name Conversion

In mapping to OWL, all Ontylog concept names must be converted to proper RDF identifiers
(rdf:id) following the RDF naming rules. This is achieved by removing any spaces in the
original names and substituting all illegal characters with underscores. Names that begin
with numbers are also prefixed with underscores to make them legal. The original concept
name however, is preserved as an rdfs:label. The following steps summarize the conversion
of names:

1. Any "+" characters are replaced with the text "plus”.

2. All role names are prefixed with an "r" to ensure that roles and properties with the same
name do not clash.

3. Any characters that are not alphanumeric, or one of "-" and "_," are replaced with an
underscore ("_").

4. All names with leading digits are prefixed with an underscore.

5. Multiple adjacent underscores in the corrected name are replaced with a single
underscore.

Ontylog Element Owl Element Comment

kindDef owl:Class

roleDef owl:ObjectProperty

propertyDef owl:AnnotationProperty

conceptDef owl:Class

name* rdf:ID Applies to the name subelement of
kindDef, roleDef, propertyDef, and

name rdfs:label Because the conceptDef name contains
some useful semantics, the original form
is retained as an rdfs:label. No other
name elements are retained in rdfs:label.

caCORE EVS API 4.0 Technical Guide

16

Ontylog Element Owl Element Comment

Code owl:AnnotationProperty Defined as an owl:AnnotationProperty
with rdf:ID="code". Code values remain
the same for each concept.

Id owl:AnnotationProperty Defined as an owl:AnnotationProperty
with rdf:ID="ID". ID values remain the
same for each concept.

definingConcepts rdfs:subClassOf The concept subelement of
definingConcepts is mapped to the
rdf:resource attribute of the
rdfs:subClassOf element.

Domain rdfs:domain

Range rdfs:range

definingRoles / role /
name

owl:onProperty definingRoles are converted to owl
restrictions on properties. The name child
element of definingRoles/role is taken as
the rdf:resource attribute of the
owl:onProperty element.

definingRoles / role /
value

owl:someValuesFrom definingRoles are converted to owl
restrictions on properties. The value child
element of definingRoles/role is taken as
the rdf:resource attribute of the
owl:someValuesFrom element.

Table 2-3 Ontylog DTD to OWL Conversions

Note: Name Ontology elements are converted to rdf:ID as described in the Ontylog Name
Conversion section. namespaceDef and namespace elements are not mapped to OWL.

Additional information about the Ontylog encoding is available in the Ontylog DTD, which
can be downloaded from the NCICB EVS FTP site, along with the zipped ASCII flat file and
the Ontylog XML encoding. The current OWL translation of the NCI Thesaurus contains over
500,000 triples and is available in zipped format from the FTP site, as well as in unzipped
format at http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl, the mindswap web site for
download or online viewing.

Ontylog Mappings

Mapping of Gene Ontology to Ontylog

The LexBIG Terminology Server provides access to the Gene OntologyTM Consortium's
(GO) controlled vocabulary. The GO ontologies are widely used-most likely due to their
simplicity of design and their potential for automated transfer of biological annotations, from
model organisms to more complex organisms based on sequence similarities. GO

 Chapter 2 Enterprise Vocabulary Services and LexBIG

 17

comprises three independent controlled vocabularies (ontologies) encoding biological
process, molecular function, and cellular components for eukaryotic genes. GO terms are
connected via two relations, is-a and part-of, that define a directed acyclic graph. Although
concepts in the ontologies were initially derived from only three model systems (yeast,
worm, and fruit fly), the goal was to encode concepts in such a way that the information is
applicable to all eukaryotic cells. Thus, species-specific anatomies are not represented, as
this would not support a unifying reference for species-divergent nomenclatures.

Each month NCI will load the latest version of GO into a test instance of the DTS server,
and, following validation in the Ontylog environment, will promote it to a production server for
programmatic access by NCI applications. NCI converts GO into the Ontylog XML
representation (necessary for import into the DTS server) via a stylesheet transformation
followed by some post-processing to satisfy Ontylog constraints. It is NCI's intent that the
version of GO on the DTS server will not be more than a month behind the current version
available from http://www.geneontology.org. However, it might be necessary to skip releases
if unforeseen complications arise.

Table 2-4 and Table 2-5 summarize the encoding of GO elements into Ontylog.

Ontology Element Instance Name (and optional description)

namespaceDef GO

kindDef GO_Kind

RoleDef part-of

This role is unused; however, the software
requires that at least
one role be declared.

propertyDef Preferred_Name

propertyDef
Synonym

propertyDef DEFINITION

propertyDef
Dbxref

complex property containing two XML-marked
up GO entities: "go:database_symbol," and
"go:reference," using tags "database_symbol"
and "reference," respectively.

propertyDef
part-of

complex property containing two XML-marked
up GO entities: "go:name" and "go:accession,"
using tags "go-term" and "go-id," respectively.

Table 2-4 Ontylog elements used for GO mapping

The go:name stored in Preferred_Name is as declared in GO. However, the go:name used
in the Ontylog name might have been modified during the conversion process (by appending
underscores) to make the Ontylog name unique.

caCORE EVS API 4.0 Technical Guide

18

GO term element conceptDef element (propertyDef)

go:accession Code

go:name Name

go:isa definingConcepts

go:name Property Preferred_Name

go:synonym Property Synonym

go:definition Property DEFINITION

go:part-of Property part-of

go:dbxref Property dbxref

Table 2-5 Mapping of GO term to Ontylog conceptDef

Mapping of MedDRA to Ontylog

Vocabulary Hierarchy Structure

The Ontylog version of MedDRA reflects the native hierarchy, with terms organized
according to their term type as shown in Figure 2-3.

 SOC (System Organ Class)

 |__ HLGT (High Level Group Term)

 |__ HLT (High Level Term)

 |__ PT (Preferred Term)

 |__LLT (Lowest Level Term)

Figure 2-3 Hierarchy of MedDRA

The Special Search Categories (SSC) are under the concept AssociativeTerm-
Group(SSCs), which has been created by the EVS as a header concept for the SSC terms
to be grouped together. All the System Organ Class (SOC) concepts as well as the top
header concept for the SSCs are under the MedDRA[V-MDR] root node. Although Low
Level Terms (LLTs) can have any type of relationship to their Preferred Term (PT) (for
example, a synonym of the PT), the Ontylog version presents them all as children concepts.
The Associative Term Group (SSCs) concept has a special code and term type not found in
MedDRA to distinguish it from other terms in the vocabulary.

Concept Codes and Names

The concept name is created from the MedDRA term followed by the MedDRA code
enclosed in brackets. The Ontylog concept name must be unique so including the code in

 Chapter 2 Enterprise Vocabulary Services and LexBIG

 19

the name guarantees uniqueness. For display purposes, the property Preferred_Name
should be used instead of the concept name; it contains the unadorned MedDRA term. The
Ontylog concept code is the MedDRA code.

Roles

A single role has been defined. The role has_associated_term is utilized to relate SSC
top-level categories with their associated PT terms. All the concepts in the vocabulary are
primitive.

Properties

The properties defined for MedDRA 6 in Ontylog are shown in Table 2-6; their provenance in
the MedDRA distribution is indicated.

Ontology Property MedDRA Entity
Code_in_Source MedDRA code (llt_code, pt_code, hlt_code, and so

forth)

Cross-reference, cross reference to WHOART COSTART, ICD9-CM, and so forth

Descriptor_ID pt_code of an LLT

MedDRA_Abbreviation soc_abbrev, spec_abbrev

NCI_META_CUI -

Preferred_Name MedDRA name (llt_name, pt_name, hlt_name, and
so forth)

Primary_SOC pt_soc_code of a PT

Serial_Code_International_SOC_Sort_Order intl_ord_code

Term_Type -

UMLS_CUI -

Table 2-6 Properties defined in the Ontylog version of MedDRA. Properties that are not
derived directly from MedDRA have a dash in the MedDRA Entity column.

Of the MedDRA-derived properties, only Cross-reference is not a straightforward name-
value pair. This property has subfields encoded in xml; the xml elements are source and
source code, where the source code contains a code or symbol assigned by an external
vocabulary source to a specific term.

Two properties are not derived from MedDRA: NCI_META_CUI and UMLS_CUI. These
properties contain the Concept Unique Identifier (CUI) of concepts in the NCI Metathesaurus
containing MedDRA terms. The property name indicates whether the CUI is assigned to the
concept by Unified Medical Language System (UMLS) or by NCI. The Term_Type property
is indirectly derived from MedDRA and indicates the hierarchy level of a term with the term
types as shown in Figure 2-3; in addition, the term type for Obsolete Lower Level Terms
(OLLT) is also used.

Mapping of MGED Ontology to Ontylog

The native MGED Ontology (MO) is edited in OilEd and distributed in the Defense Advanced

caCORE EVS API 4.0 Technical Guide

20

Research Projects Agency (DARPA) Agent Markup Language (DAML) + Ontology Inference
Layer (OIL) XML format. DAML+OIL can be converted to the Ontylog Description Logic (DL)
in a relatively straightforward manner. However, some valid DAML+OIL constructions
cannot be represented in Ontylog DL, including enumerations and specific combinations of
ObjectProperties that result in classification cycles in Ontylog. In MO version 1.1.9, two
ObjectProperties have been asserted near the top of the hierarchy on the
MGEDCoreOntology class. On conversion to Ontylog these assertions generate
classification cycles, however, the data cannot be massaged as was done in preliminary
conversions with previous versions of MO because the fix would have required modifications
to every converted concept. Consequently, beginning with MO v 1.1.9, all the
ObjectProperties in DAML+OIL are converted to Ontylog properties (rather than Ontylog
roles), which are annotations ignored by the classifier.

Vocabulary Hierarchy Structure

The MO class hierarchy structure is preserved in the Ontylog conversion. One minor
difference is that MO class instances are also represented in the Ontylog concept hierarchy
(since there is no distinction between classes and instances in Ontylog). A non-MO top-level
concept, OrphanConcepts, has been added in the Ontylog representation to hold MO
instances of Thing.

Concept IDs, Codes, and Names

MO classes and instances are identified solely by their name; no codes or numeric IDs are
assigned. For the conversion to Ontylog, MO class or instance names are retained as
concept names. As Ontylog concepts also require unique codes and IDs, a code and an ID
are created during the conversion. The ID reflects the position of the class or instance in the
XML tree. The code is derived from the ID by adding an “X-MO-” prefix to it; therefore, the
code is not guaranteed to remain invariant from version to version of the MO. A mapping
table is made available whenever the MO is updated.

Roles

No roles have been defined; all the concepts are primitive.

Properties

All the object and datatype properties defined in MO have been converted to Ontylog
properties. With the exception of has_reason_for_deprecation and has_database, all the
properties have been 'manually” propagated to children concepts in the database in order to
mimic the expected role inheritance. In addition, new properties have been defined as
shown in Table 2-7.

 Chapter 2 Enterprise Vocabulary Services and LexBIG

 21

Ontylog Property MGED Ontology Entity

DEFINITION rdfs:comment value

Preferred_Name rdf:about value

Synonym rdf:about value

Concept_Type -

Table 2-7 New properties defined in the Ontylog version of the MGED Ontology and their provenance
(if applicable) in the daml+oit file

The Preferred_Name property is recommended for display purposes, while Synonym is
recommended for searches by dependent applications (even though the value of both
properties is the same, the EVS tries to maintain a certain consistency in the usage of
properties for the benefit of all users). The Concept_Type property holds one of two
values: mged_class , or mged_instance .

LexBIG
caCORE EVS is the adopter site for the open source public domain terminology server
LexBIG, developed by the Mayo Clinic as part of the caBIG Program. The goal of caCORE
EVS is to adopt LexBIG as the sole terminology server infrastructure for EVS. The Apelon
DTS server is a proprietary server that does not allow exposure of the API. As a result,
caCORE EVS 3.2 and earlier have provided a custom API that communicates directly with
the DTS Server and is publicly available. The caCORE EVS 4.0 release begins the transition
to LexBIG by re-exposing the caCORE EVS 3.2 custom API with LexBIG as the backend
terminology server. Additionally the caCORE EVS 3.2 API will continue to be supported for
approximately one year. This gives users who have implemented to the caCORE EVS 3.2
API time to plan for the removal of the Apelon DTS server.

LexBIG is based on the LexGrid Model, Mayo’s proposal for standard storage of controlled
vocabularies and ontologies. The LexGrid Model defines how vocabularies should be
formatted and represented programmatically, and is intended to be flexible enough to
represent accurately a wide variety of vocabularies and other lexically based resources. The
model also defines several different server storage mechanisms (for example, relational
database, LDAP) and a XML format. This model provides the core representation for all data
managed and retrieved through the LexBIG system, and is now rich enough to represent
vocabularies provided in numerous source formats including: Open Biomedical Ontologies
(OBO) , Web Ontology Language (OWL), and the Unified Medical Language System
(UMLS) Rich Release Format (RRF). This common model is a critical component of the
LexGrid project. Once disparate vocabulary information can be represented in a
standardized model, it becomes possible to build common repositories to store vocabulary
content and common programming interfaces and tools to access and manipulate that
content.

LexBIG has three major components: Service Management tools to load, index, and
manage vocabulary content for the vocabulary server; an API providing Java interfaces to
various functions including lexical queries, graph representation and traversal, and NCI
change event history; and a Graphical User Interface providing access to service
management and API functions. The LexBIG API enables querying information stored in the
LexGrid model. Similar APIs have been developed for LexBio that are used at the National

caCORE EVS API 4.0 Technical Guide

22

Center for Bioontologies (NCBO). NCI EVS has adopted and modified the NCBO’s BioPortal
as a web browser for LexBIG. The NCI BioPortal can be accessed at
http://bioportal.nci.nih.gov.

In summary LexBIG provides the following features:

• A robust and scalable open source implementation of EVS-compliant vocabulary
services. The API specification will be based on but not limited to fulfillment of the
caCORE EVS API. The specification will be further refined to accommodate changes
and requirements based on prioritized needs of the caBIG™ community.

• A flexible implementation for vocabulary storage and persistence, allowing for alternative
mechanisms without affecting client applications or end users. Initial development will
focus on delivery of open source freely available solutions, though this does not preclude
the ability to introduce commercial solutions (for example, Oracle).

• A standard tool for loading and distribution of vocabulary content. This includes but is not
limited to support of standardized representations such as UMLS Rich Release Format
(RRF), the OWL web ontology language, and Open Biomedical Ontologies (OBO).

 23

Chapter 3 Overview to caCORE

This chapter provides an overview of the NCI CBIIT caCORE infrastructure.

Topics in this chapter include:

• Architecture Overview on this page
• Components of caCORE on page 24

Architecture Overview
The NCI Center for Bioinformatics (NCICB) provides biomedical informatics support and
integration capabilities to the cancer research community. NCICB has created a core
infrastructure called Cancer Common Ontologic Representation Environment (caCORE), a
data management framework designed for researchers who need to be able to navigate
through a large number of data sources. By providing a common data management
framework, caCORE helps streamline the informatics development throughout academic,
government and private research labs and clinics. The components of caCORE support the
semantic consistency, clarity, and comparability of biomedical research data and
information. caCORE is open-source enterprise architecture for NCI-supported research
information systems, built using formal techniques from the software engineering and
computer science communities. The four characteristics of caCORE include:

• Model Driven Architecture (MDA)
• n-tier architecture with open Application Programming Interfaces (APIs)
• Use of controlled vocabularies, wherever possible
• Registered metadata
The use of MDA and n-tier architecture, both standard software engineering practices,
allows for easy access to data, particularly by other applications. The use of controlled
vocabularies and registered metadata, less common in conventional software practices,
requires specialized tools, generally unavailable.

As a result, the NCI CBIIT (in cooperation with the NCI Office of Communications) has
developed the Enterprise Vocabulary Services (EVS) system to supply controlled
vocabularies, and the Cancer Data Standards Repository (caDSR) to provide a dynamic
metadata registry. When all four development principles are addressed, the resulting system
has several desirable properties. Systems with these properties are said to be “caCORE-
like”.

1. The n-tier architecture with its open APIs frees the end user (whether human or
machine) from needing to understand the implementation details of the underlying data
system to retrieve information.

2. The maintainer of the resource can move the data or change implementation details
(Relational Database Management System, and so forth) without affecting the ability of
remote systems to access the data.

3. Most importantly, the system is ‘semantically interoperable’; that is, there exists runtime-
retrievable information that can provide an explicit definition and complete data
characteristics for each object and attribute that can be supplied by the data system.

caCORE EVS API 4.0 Technical Guide

24

Components of caCORE
The components that comprise caCORE are EVS, caDSR, caBIO, CSM, and CLM. Each is
described briefly below.

Enterprise Vocabulary Services (EVS)

EVS provides controlled vocabulary resources that support the life sciences domain,
implemented in a description logics framework. EVS vocabularies provide the semantic 'raw
material' from which data elements, classes, and objects are constructed.

Cancer Data Standards Repository (caDSR)

The caDSR is a metadata registry, based upon the ISO/IEC 11179 standard, used to
register the descriptive information needed to render cancer research data reusable and
interoperable. The caBIO, EVS, and caDSR data classes are registered in the caDSR, as
are the data elements on NCI-sponsored clinical trials case report forms.

Cancer Bioinformatics Infrastructure Objects (caBIO)

The caBIO model and architecture is the primary programmatic interface to caCORE. Each
of the caBIO domain objects represents an entity found in biomedical research. Unified
Modeling Language™ (UML) models of biomedical objects are implemented in Java as
middleware connected to various cancer research databases to facilitate data integration
and consistent representation. Examining the relationships between these objects can
reveal biomedical knowledge that was previously buried in the various primary data sources.

Common Security Model (CSM)

CSM provides a flexible solution for application security and access control with three main
functions:

• Authentication to validate and verify a user's credentials
• Authorization to grant or deny access to data, methods, and objects
• User Authorization Provisioning to allow an administrator to create and assign

authorization roles and privileges.

Common Logging Module (CLM)

CLM provides a separate service under caCORE for Audit and Logging Capabilities. It also
comes with a web based locator tool. It can be used by a client application directly, without
the application using any other components like CSM.

In September of 2007, the NCI CBIIT Infrastructure and Product Management Team made the
decision to separate the caCORE Components that had previously been bundled and released
together. This decision was geared toward allowing each of the infrastructure product teams to
be more responsive in addressing specific needs of the user community. caCORE EVS is the
first component to release under the new release paradigm. With each component release there
is a product specific Technical Guide.

 Chapter 3 Overview to caCORE

 25

This particular guide focuses on the EVS component of caCORE 4.0. For more details on the
other components, refer to the caCORE Overview page at
http://ncicb.nci.nih.gov:80/NCICB/infrastructure/cacore_overview, which directs you to other
product specific Technical Guides.

caCORE EVS API 4.0 Technical Guide

26

 27

Chapter 4 caCORE EVS Architecture

This chapter describes the architecture of the caCORE EVS. It includes information about
the client-server communication. It also describes the layout of the system software
packages.

Topics in this chapter include:

• caCORE EVS System Architecture on this page
• Client Technologies on page 28
• caCORE EVS Software Packages on page 29

caCORE EVS System Architecture
The caCORE EVS infrastructure exhibits an n-tiered architecture with client interfaces,
server components, backend objects, and additional backend systems (Figure 4-1). This
n-tiered system divides tasks or requests among different servers and data stores. This
isolates the client from the details of where and how data is retrieved from different the
LexBIG terminology server.

Clients (browsers, applications) receive information from backend objects. Java
applications also communicate with backend objects via domain objects packaged within
the evs-client.jar. Non-Java applications can communicate via SOAP (Simple Object
Access Protocol). Back-end objects communicate directly with the LexBIG API.

Figure 4-1 caCORE/EVS Architecture

caCORE EVS API 4.0 Technical Guide

28

Most of the caCORE EVS infrastructure is written in the Java programming language
and leverages reusable, third-party components.

The infrastructure is composed of the following layers:

The Application Service layer — consolidates incoming requests from the various
interfaces and translates them to native query requests that are then passed to the data
layers. All interfaces provide full, anonymous read-only access to all data.)

The Data Source Delegation layer — is responsible for conveying each query that it
receives to the respective LexBIG Service objects that can perform the query.

Object-Object Mapping (OOM) — is performed by objects that follow the façade design
pattern. These objects make the task of accessing a large number of modules/functions
much simpler by providing an additional interface layer that allows it to interact with the
rest of the caCORE EVS system.

LexBIG Service API — The LexBIG Service is designed to run standalone or as part of
a larger network of services. It is comprised of four primary subsystems: Service
Management, Service Metadata, Query Operations, and Extensions. The Service
Manager provides administration control for loading a vocabulary and activating a
service. The Service Metadata provides external clients with information about the
vocabulary content (that is, NCI Thesaurus) and appropriate licensing information. The
Query Operations provide numerous functions for querying and traversing vocabulary
content. Finally, the extensions component provides a mechanism to extend the specific
service functions, such as Loaders, or re-wrap specific query operations into
convenience methods. For more information refer to the LexBIG Programmer’s Guide.

Client Technologies
Applications using the Java programming language can access EVS directly through the
domain objects provided by the evsapi-client.jar (see Chapter 4) The network details of
the communication to the caCORE EVS server are abstracted away from the developer.
Hence developers need not deal with issues such as network and database
communication, but can instead concentrate on the biological problem domain.

The caCORE EVS system also allows non-Java applications to use SOAP clients to
interface with caCORE EVS Web services. SOAP is a lightweight XML-based protocol
for the exchange of information in a decentralized, distributed environment. It consists of
an envelope that describes the message and a framework for message transport.
caCORE EVS uses the open source Apache Axis package to provide SOAP-based web
services to users. This allows other languages, such as Python or Perl to communicate
with caCORE EVS objects in a straightforward manner.

The caCORE EVS architecture includes a presentation layer that uses a J2SE
application server (such as Tomcat or JBoss). The JSPs (Java Server Pages) are web
pages with Java embedded in the HTML to incorporate dynamic content in the page.
caCORE EVS also employs Java Servlets, which are server-side Java programs, that
web servers can run to generate content in response to client requests. All logic
implemented by the presentation layer uses Java Beans, which are reusable software
components that work with Java. All caCORE EVS objects can be transformed into XML,
the eXtensible Markup Language, as a universal format for structured data on the Web.

Communication between the client interfaces and the server components occurs over
the Internet using the HTTP protocol. The server components are deployed in a web

 Chapter 4 caCORE EVS Architecture

 29

application container as a .war (Web archive) file that communicates with the LexBIG
terminology server.

caCORE EVS Software Packages
The caCORE EVS software is comprised of several java packages. A few of the
significant packages include:

• gov.nih.nci.evs.domain
• gov.nih.nci.evs.query
• gov.nih.nci.lexbig
The caCORE EVS domain package (Figure 4-2) provides access to the Java 3.2
interfaces and classes such as DescLogicConcept, MetaThesaurusConcept, etc. For a
complete list of domain objects, see the EVS 3.2 Object Model.

The query package contains classes that facilitate a custom query mechanism for EVS
domain objects and is discussed in Chapter 5 Interacting with caCORE EVS.

The lexbig package contains the Distributed LexBIG (DLB) Adapter classes discussed
in more detail later in this guide.

Figure 4-2 caCORE EVS packages

In addition to domain packages, the caCORE EVS API specification includes the
framework packages described in the following subsections.

System

The system package contains several subpackages including a lib folder that holds the

caCORE EVS API 4.0 Technical Guide

30

third-party libraries required to deploy the system. It also contains the src folder that
contains the bulk of the EVS system code. The src subpackages include the EVSQuery
classes, the Distributed LexBIG Adapter (DLBAdapter) classes, and the system
package. The system package contains the following categories of subpackages:
application service package (described in the Client Technologies on page 28), data
access package, delegate/service locator package, proxy package, and web service
package.

• EVS Query – the gov.nih.nci.evs.query package contains the evsQuery and
evsQueryImpl java interface and class.

• DLBAdapter – the gov.nih.nci.lexbig.ext package contains the DLBAdapter classes.
These convenience methods are used to supplement access to the Distributed
LexBIG API (described in Chapter 5).

• Data Access – The data access package (gov.nih.nci.system.dao) is the layer at
which the query is parsed from objects to the native query, the query is executed,
and the result sets are converted back to domain objects results. This layer has
implementation for external data access layer for querying other subsystems. It also
contains the security objects required to support the controlled access requirements
to the MedDRA data source.

• Proxy Interface – The proxy interface package (gov.nih.nci.system.client.proxy) is
the gateway for the requests from Java and platform independent web service
clients.

• Web Service - The Web service package (gov.nih.nci.system.webservice) contains
the Web service wrapper class that uses Apache’s Axis.

• Web - The Web package (gov.nih.nci.system.web) contains the useful utilities.

 31

Chapter 5 Interacting with caCORE EVS

This chapter describes the components of the caCORE EVS 4.0 release, the service interface
layer provided by the EVS API architecture, and gives examples of how to use the EVS 4.0
APIs. This chapter also describes the Distributed LexBIG API and the Distributed LexBIG
Adapter.

Topics in this chapter include:

• caCORE EVS Components on this page
• EVS 3.2 Object Model on page 33
• EVS Data Sources on page 35
• EVS 3.2 Java API on page 35
• Search Paradigm on page 40
• EVSQuery and EVSQueryImpl on page 41
• EVSQuery Methods and Parameters on page 41
• Accessing Secured Vocabularies on page 43
• Examples of Use on page 43
• Web Services API on page 46
• XML�HTTP API on page 52
• Utility Methods on page 56
• Distributed LexBIG API on page 58
• Distributed LexBIG Adapter on page 63

caCORE EVS Components
The caCORE EVS API is a public domain open source wrapper that provides full access to
the LexBIG Terminology Server. LexBIG hosts the NCI Thesaurus, the NCI Metathesaurus
and several other vocabularies. Java clients accessing the NCI Thesaurus and
Metathesaurus vocabularies communicate their requests via the open source caCORE EVS
APIs as shown in Figure 5-1.

caCORE EVS API 4.0 Technical Guide

32

Figure 5-1 Overview of the caCORE EVS 4.0 Release Components

The open source interfaces provided as part of caCORE EVS 4.0 include Java APIs, a
SOAP interface, and an HTTP REST interface. The Java APIs are based on the following
object models:

• the EVS 3.2 object model
• the LexBIG Service object model
The EVS 3.2 model, exposed as part of caCORE 3.2, has been re-released with LexBIG as
the backend terminology service versus the proprietary Apelon DTS backend. The SOAP
and HTTP REST interfaces are also based on the 3.2 object model. The SDK 4.0 was used
to generate the EVS 3.2 Java API, as well as the SOAP and HTTP REST interfaces.

Notes: The only difference between the EVS 3.2 API exposed as part of the caCORE EVS
4.0 and that exposed as part of caCORE 3.2 is the backend terminology server used to
retrieve the vocabulary data. The interface (API calls) are the same and should only require
minor adjustments to user applications. You are not able to integrate caCORE 3.2
components with caCORE EVS 4.0. If you used multiple components of caCORE 3.2 (for
example, EVS with caDSR), you will need to continue to work with the caCORE 3.2 release
until the other caCORE 4.0 components are available.

The LexBIG object model was developed by the Mayo Clinic. The associated API, in its
native form, assumes a “local” non-distributed means of access. With caCORE EVS 4.0, a
proxy layer is provided that enables EVS API clients to access the native LexBIG API from
anywhere, without needing to worry about the underlying data sources. This is called the
Distributed LexBIG (DLB) API.

The DLB Adapter is another option for caCORE EVS 4.0 clients who choose to interface
directly with the LexBIG API. It is essentially a set of convenience methods intended to
simplify the use of the LexBIG API (for example, a series of method calls against the DLB
API might equate to a single method call to the DLB Adapter).

 Chapter 5 Interacting with caCORE EVS

 33

Note: The DLB Adapter is not intended to represent a complete set of convenience
methods. As part of the caCORE EVS 4.0 release, the intention is that users will work with
the DLB API and identify/suggest useful methods of convenience to the EVS Development
Team.

EVS 3.2 Object Model
The EVS 3.2 Java API is based on the EVS 3.2 object model. The UML Class diagram
(object model) in Figure 5-2 provides an overview of the EVS 3.2 domain object classes.
The DescLogicConcept and MetaThesaurusConcept are two central Concept classes in the
model, with most of the other classes organizing themselves around these entities. The
Vocabulary and SecurityToken were added as part of the caCORE 3.2 release. The
SecurityToken class can be used to specify security credentials like username, password,
security token etc.

The DAO Security model provides data level security to Vocabularies. The MedDRASecurity
class, the class that implements the DAOSecurity interface, validates a token against the
MedDRA vocabulary and prevents unauthorized users from performing any of the queries
against MedDRA. To access MedDRA via the EVS 3.2 Java API, a user must obtain a valid
token from NCI CBIIT.

cd caCORE 3.2 EVS

domain::AttributeSetDescriptor

- name: String
- WITH_NO_ATTRIBUTES: int = 0
- WITH_ALL_ATTRIBUTES: int = 1
- WITH_ALL_ROLES: int = 2
- WITH_ALL_PROPERTIES: int = 3

domain::DescLogicConcept

- code: String
- hasChildren: Boolean
- hasParents: Boolean
- isRetired: Boolean
- name: String
- namespaceId: int
- semanticTypeVector: Vector

domain::History

- editAction: String
- editActionDate: Date
- referenceCode: String
- namespaceId: int

domain::MetaThesaurusConcept

- cui : String
- name: String
- synonymCollection: ArrayList

domain::Property

- name: String
- value: String

domain::Role

- name: String
- value: String

domain::Source

- code: String
- abbreviation: String
- description: String

domain::SemanticType

- name: String
- id: String

domain::Definition

- definition: String

domain::HistoryRecord

- descLogicConceptCode: String

domain::Atom

- code: String
- name: String
- origin: String
- lui : String

domain::
Qualifier

- name: String
- value: String

domain::
Association

- name: String
- value: String

domain::EdgeProperties

- isA: boolean
- traverseDown: boolean
- name: String
- l inks: HashSet

domain::Silo

- id: int
- name: String

domain::Vocabulary

- namespaceId: int
- name: String
- description: String

security::
SecurityToken

- userName: String
- password: String
- accessToken: String

domain::TreeNode

- isA: boolean
- traverseDown: boolean
- name: String
- l inks: HashSet

0..*+qual i fierCol lection

0..*

+propertyCol lection

0..*

+roleCollection

0..*

+roleCol lection

0..*

+semanticTypeCollection

0..*

+sourceCollection

0..*+propertyCol lection

0..1

+source

0..*+defini tionCollection

0..*

+historyCollection

1..*

+atomCollection

0..*

+inverseRoleCol lection

0..*

+qual i fierCol lection

0..*+associationCol lection

0..1

+treeNode

0..1

+edgeProperties

0..*

+si loCol lection

1

+vocabulary

0..1+historyRecord

0..1

+securi tyToken

0..*

+inverseAssociationCol lection

1+source

Figure 5-2 The caCORE EVS 3.2 Java API domain object classes

Note: Since the EVS API is generated using the SDK, it is useful to note that the EVS API
diverges somewhat from the other caCORE domain models(that is, caDSR and caBIO) in its

caCORE EVS API 4.0 Technical Guide

34

search mechanisms. While the other APIs have direct access to their databases, the EVS
API does not. Since all EVS queries are passed through the LexBIG APIs, the search and
retrieval capabilities are effectively proscribed by the features implemented by the open
terminology server.

EVS 3.2 Domain Object Catalog

The caCORE EVS domain objects are implemented as Java beans in the
gov.nih.nci.evs.domain package. Table 5-1 lists each class and a description.
Detailed descriptions about each class and its methods are present in the caCORE EVS 4.0
JavaDocs. The only interface implemented by the EVS domain objects is
java.io.serializable .

EVS Domain Object Description
Association Relates a concept or a term to another concept or term. Association

falls into three categories; concept association, term association, and
synonyms, which are concept-term associations.

Atom An occurrence of a term in a source.

AttributeSetDescriptor set of concept attributes that should be retrieved by a given operation.

Definition Textual definition from an identified source

DescLogicConcept the fundamental vocabulary entity in the NCI Thesaurus.

EdgeProperties Specifies the relationship between a concept and its immediate parent
when a DefaultMutableTree is generated using the getTree method.

EditActionDate Stores edit action and date information. This class is deprecated and
will be removed from a future release. Please use History class
instead.

History Stores the concept history information.

HistoryRecord Stores the DescriptionLogicConcept code.

MetaThesaurusConcept fundamental vocabulary entity in the NCI MetaThesaurus

Property an attribute of a concept. Examples of properties are "Synonym",
"Preferred_Name", "Semantic_Type" etc.

Qualifier Attached to associations and properties of a concept.

Role Defines a relationship between two concepts.

SemanticType a category defined in the semantic network that can be used to group
similar concepts

Silo A repository of customized concept terminology data from a knowledge
base. There can be a single silo or multiple silos, each consisting of
semantically related concepts and extracted character strings
associated with those concepts.

SecurityToken Stores security information for a Vocabulary.

 Chapter 5 Interacting with caCORE EVS

 35

EVS Domain Object Description
Source The source is a knowledge base.

TreeNode Specifies the relationship between a concept and its immediate parent
when a DefaultMutableTree is generated using the getTree method.
This class is deprecated and will be removed from a future release.
Please use EdgeProperties instead.

Vocabulary Vocabulary entity or namespace.

Table 5-1 caCORE EVS domain objects and descriptions

EVS Data Sources
The EVS data source is the open source, LexBIG terminology server. EVS clients interface
with the LexBIG API to retrieve desired vocabulary data.

The EVS provides NCI with services and resources for controlled biomedical vocabularies,
and includes both the NCI Thesaurus and the NCI Metathesaurus. The NCI Thesaurus is
composed of over 27,000 concepts represented by about 78,000 terms. The Thesaurus is
organized into 18 hierarchical trees covering areas such as Neoplasms, Drugs, Anatomy,
Genes, Proteins, and Techniques. These terms are deployed by NCI in its automated
systems for uses such as key wording and database coding. The NCI Metathesaurus maps
terms from one standard vocabulary to another, facilitating collaboration, data sharing, and
data pooling for clinical trials and scientific databases. The Metathesaurus is based on the
NLM's Unified Medical Language System (UMLS) and is composed of over 70 biomedical
vocabularies.

EVS 3.2 Java API
The EVS 3.2 Java API bundled with the caCORE EVS 4.0 release provides direct access to
domain objects and all service methods. Because caCORE EVS is natively built in Java, this
API provides the fullest set of features and capabilities.

Note: The caCORE 3.2 release also provides an EVS 3.2 Java client API. The difference
between the 3.2 and the 4.0 clients is the backend terminology server. caCORE 3.2 uses
the proprietary Apelon DTS and caCORE EVS 4.0 uses LexBIG. The API is the same and
should only require minor updates to a client application wanting to migrate to the EVS 3.2
Java API provided with caCORE EVS 4.0.

Installation and Configuration

The caCORE EVS Java 3.2 API uses the following software on the client machine (Table
5-2).

Software Version Required?
Java 2 Platform Standard
Edition Software 5.0
Development Kit (JDK 5.0)

1.5.0 or higher Yes

Apache Ant 1.6.5 or higher Yes

Table 5-2 caCORE EVS Java API Client software

caCORE EVS API 4.0 Technical Guide

36

Accessing the caCORE EVS system also requires an Internet connection.

To use the Java API, download the client package provided on the NCICB web site (Figure
5-3).

Figure 5-3 Downloads section on the NCICB website

1. Open your browser and go to http://ncicb.nci.nih.gov.

2. Click the Download link on the menu bar.

3. Scroll down to the section titled EVS and click on the Download link.

4. In the provided form, enter your name, email address and institution name and click to
Enter the Download Area.

5. Accept the license agreement.

6. On the caCORE EVS downloads page, download the EVS Zip file from the Primary
Distribution section.

7. Extract the contents of the downloadable archive to a directory on your hard drive (for
example, c:\evsapi on Windows or /usr/local/evsapi on Linux). The extracted
directories and files include the following (Table 5-3):

Directories and Files Description Component
build.xml Ant build file Build file

TestClient.java Java API client samples (for
local, remote and web service
clients)

TestEVS.java Java API EVS client sample

Sample code

 Chapter 5 Interacting with caCORE EVS

 37

Directories and Files Description Component
TestXMLClient.java XML utility sample

lib directory contains required jar files

evsapi-client.jar domain objects

spring.jar Spring framework HTTP Remoting

acegi-security-1.0.4 Spring Security

asm.jar

antlr-2.7.6 Apache Ant

axis.jar Apache Axis

saaj.jar SOAP API for Java

jaxrpc.jar Java API for XML-based RPC

wsdl4j-1.5.1.jar WSDL for Java

Web services

(Java implementation)

log4j-1.2.13.jar logging utilities Logging

commons-logging-1.1.jar

commons-codec-1.3.jar

commons-collections-3.2.jar

commons-discovery-0.2.jar

commons-pool-1.3.jar

evsapi-beans.jar EVS API Beans Domain Classes

evsapi-framework.jar caCORE EVS Framework

lg* LexGRID Classes LexBIG

lb* LexBIG Classes

lucene-core-2.0.0 Index Search LexBIG

castor-1.0.2.jar Castor serializer/deserializer

xercesImpl.jar Apache Xerces XML parser

*.xsd XML schemas for objects

XML conversion

activation.jar

cglib-2.1.3.jar

xml.properties

xml-mapping.xml

conf directory

remoteService.xml

caCORE EVS API 4.0 Technical Guide

38

Directories and Files Description Component
deploy.wsdd

log4j.properties Logging utilities configuration
properties

Table 5-3 Extracted directories and files in caCORE EVS client package

All of the jar files in the lib directory of the caCORE EVS client package, in addition to the
files in the conf directory, are required to use the Java API. These should be included in the
Java classpath when building applications. The build.xml file that is included
demonstrates how to do this when using Ant for command-line builds. If you are using an
integrated development environment (IDE) such as Eclipse, refer to the tool's documentation
for information on how to set the classpath.

Installation Verification: A Simple Example

To run the simple example program after installing the caCORE EVS client, open a
command prompt or terminal window from the directory where you extracted the down-
loaded archive and enter ant . This displays a list of ant targets that identify the test
execution options as shown below.

Buildfile: build.xml

help:

 [echo] ===============================

 [echo] caCORE EVS API - HELP

 [echo] ===============================

 [echo]

 [echo] To run the test programs use the follow ing commands:

 [echo]

 [echo] 1. TestClient - ant run

 [echo] 2. TestEVS - ant runevs

 [echo] 3. TestXML - ant runxml

 [echo]

BUILD SUCCESSFUL

Total time: 0 seconds

Enter the desired ant command and the associated test class is compiled and run.
Successfully running this example code indicates that you have properly installed and
configured the caCORE EVS client. The following is a short segment of code from the
TestClient class along with an explanation of its functioning.

EVSApplicationService appService =

 (EVSApplicationService)ApplicationServiceProvider.

 Chapter 5 Interacting with caCORE EVS

 39

 getApplicationService();

try {

 DescLogicConcept dlc = new DescLogicConcept();

 dlc.setName("ear*");

 Collection results = appService.search("gov.nih.nc i.evs.domain.DescLogicConcept",

dlc);

 System.out.println("Results: "+ results.size());

 for(Object o : results) {

 DescLogicConcept obj = (DescLogicConcept)o ;

 System.out.println("Concept name : "+ obj. getName() +"\t"+ obj.getCode());

 Vector propList = (Vector)obj.getPropertyC ollection();

 if (propList == null) {

 System.out.println("NO prop erties found");

 } else {

 System.out.println("Propert ies: "+ propList.size());

 }

 Vector roleList = (Vector) obj.getR oleCollection();

 if (roleList == null) {

 System.out.println("No roles fou nd");

 } else {

 System.out.println("Roles: "+ roleList.size());

 }

 }

} catch(Exception e) {

 System.out.println(">>>"+e.getMessage());

 e.printStackTrace();

}

This code snippet creates an instance of a class that implements the EVSApplicationService
interface. This interface defines the service methods used to access data objects. A criterion
object is then created that defines the attribute values for which to search. The search
method of the EVSApplicationService implementation is called with parameters that indicate
the type of objects to return, gov.nih.nci.evs.domain.DescLogicConcept , and the criteria
that returned objects must meet, defined by the dlc object. The search method returns

caCORE EVS API 4.0 Technical Guide

40

objects in a Collection, which is iterated through to print some basic information about the
objects.

Although this is a fairly simple example of the use of the EVS Java API, a similar sequence
can be followed with more complex criteria to perform sophisticated manipulation of the data
provided by caCORE EVS. Additional information and examples are provided in the sections
that follow.

 Search Paradigm
The caCORE EVS architecture includes a service layer that provides a single, common
access paradigm to clients using any of the provided interfaces. As an object-oriented
middleware layer designed for flexible data access, caCORE EVS relies heavily on strongly
typed objects and an object-in/object-out mechanism. The basic order of operations required
to access and use a caCORE EVS system is as follows:

1. Ensure that the client application has knowledge of the objects in the domain space.

2. Formulate the query criteria using the domain objects.

3. Establish a connection to the server.

4. Submit the query objects and specify the desired class of objects to be returned.

5. Use and manipulate the result set as desired.

There are four primary application programming interfaces (APIs) native to caCORE EVS
systems. Each of the available interfaces described below uses this same paradigm to
provide access to the caCORE EVS domain model, but with minor changes relating
primarily to the syntax and structure of the clients. The following sections describe each API,
identify installation and configuration requirements, and provide code examples.

The sequence diagram in Figure 5-4 provides an overview of the caCORE 4.0 EVS API
search mechanism implemented to access the NCI EVS vocabularies.

sd caCORE EVS Sequence Diagram

EVS User

TestEVS EVSQuery SecurityToken EVSApplicationServ ice Spring
Framework

EVSApplicationServ iceImpl DAOSecurity MedDRASecurity

MSSOUserValidation LexBIG

run evsdemo

searchDescLogicConcepts(MedDRA)

addSecurityToken(MedDRA, token)

evsSearch(evsQuery)

response=evsQuery(request)

response=query(request)

MedDRASecurity=getSecurityAdapter

getAccessCode(token)

va lidateToken(token)

= true

accessCode =

searchDescLogicConcepts

vector =

response =

List =

Figure 5-4 EVS sequence diagram

 Chapter 5 Interacting with caCORE EVS

 41

An EVS search is performed by calling the evsSearch operation defined in the Applica-
tionService class.

List evsSearch(EVSQuery evsQuery);

EVSQuery and EVSQueryImpl
The gov.nih.nci.evs.query package consists of the EVSQuery.java interface and
the EVSQueryImpl.java class. The methods defined in the EVSQuery.java file can be
used to query the LexBIG Terminology Server. The query object generated by this class can
hold one query at a time. The following example code segment demonstrates an EVSQuery
object that calls the searchDescLogicConcept method.

String vocabularyName = "GO";

String conceptCode = "GO:0005667";

EVSQuery evsQuery = new EVSQueryImpl();

evsQuery.searchDescLogicConcept(vocabularyName,conc eptCode,true);

To perform a search on the Description Logic Vocabulary you must specify the vocabulary
name. In most instances methods that do not require vocabulary names are NCI
MetaThesaurus queries.

EVSQuery Methods and Parameters
Most of the methods defined in the EVSQuery accept concept names or concept codes. If a
vocabulary name is required as a parameter along with a concept code or name, a valid
DescLogicConcept name or code needs to be passed to the search method.

Note: A search term is a String and is not considered as a valid concept name. To get a
valid DescLogicConcept name you must perform a search using the
searchDescLogicConcept method. Likewise to get a valid MetaThesaurusConcept name or
CUI (Concept Unique Identifier) you must perform a search using the searchMetaThesaurus
method. Most of the search methods defined in the EVSQuery require a valid concept name
or code.

Some of the methods defined in the EVSQuery are listed in the following table (Table 5-4).

Method name Parameter Comments Returned by
evsSearch

String
vocabularyName

A valid Description
Logic vocabulary
name such as
"NCI_Thesaurus",
"GO", "HL7" etc

String searchTerm Any string value

searchDescLogicConcept

int limit Maximum number of
records

Returns one or more
DescLogicConcepts
in a List.

searchMetaThesaurus String searchTerm Any String value or a
valid Concept Unique
Identifier. A Concept
Unique identifier is
used to uniquely

Returns one or more
MetaThesaurusConc
epts in a List.

caCORE EVS API 4.0 Technical Guide

42

Method name Parameter Comments Returned by
evsSearch

identify concepts in
the MetaThesaurus.

int Limit Maximum number of
records

String Source Source abbreviation.
Each Source has a
source abbreviation
that can uniquely
identify a source.

boolean Cui This value is set to
true if a concept
unique identifier is
used as a search
term

boolean
shortResponse

Set to true for short
response

boolean score Set to true for score
String
vocabularyName

A valid Description
Logic vocabulary
name such as
"NCI_Thesaurus",
"GO", "HL7" etc

getHistoryRecords

String
conceptCode

A valid code of a
DescLogicConcept.

Returns one or more
HistoryRecords in a
List.

getVocabularyNames Returns one or more
Description Logic
vocabulary names in
a List

getMetaSources Returns one or more
Source objects in a
List.

String code A valid Atom code. searchSourceByCode
String
sourceAbbreviation

Valid source
abbreviation

Returns one or more
MetaThesaurusConc
epts in a List.

String
vocabularyName

A valid Description
Logic vocabulary
name

String rootName A valid
DescLogicConcept
name

boolean direction Set to true if traverse
down

boolean isaFlag Set to true if
relationship is child

int attributes Sets a
AttributeSetDescriptor
value

int levels Depth of the tree

getTree

Vector roles Valid role names

Returns a
DescLogicConcept
tree in a List

Table 5-4 Methods defined in the EVSQuery

 Chapter 5 Interacting with caCORE EVS

 43

Accessing Secured Vocabularies
MedDRA is a Secured vocabulary for which a user must obtain a valid security token to
access. The example below depicts the syntax of setting a security token to access a
secured Vocabulary.

gov.nih.nci.evs.query.EVSQuery evsQuery = new

gov.nih.nci.evs.query.EVSQueryImpl();

gov.nih.nci.evs.security.SecurityToken token = new

gov.nih.nci.evs.security.SecurityToken();

token.setAccessToken(“123456”);

evsQuery.addSecurityToken(“MedDRA”, token);

evsQuery.getDescLogicConcept(“MedDRA”, “Blood”, fal se);

Note: You must obtain a valid security token from NCICB to access MedDRA via the
caCORE EVS API. The security token value used in the example is not valid.

Use the following instructions to create an EVS search request.

1. Create an ApplicationService instance.

EVSApplicationService appService = (EVSApplicationS ervice)

ApplicationServiceProvider.getApplicationService();

2. Instantiate an EVSQuery instance and set the method name and parameters.

EVSQuery evsQuery = new EVSQueryImpl();

evsQuery.searchDescLogicConcepts("NCI_Thesaurus","b lood*",10);

3. Set the security token value. This step can be omitted if the vocabulary does not require
a security token.

gov.nih.nci.evs.security.SecurityToken token = new

gov.nih.nci.evs.security.SecurityToken();

token.setAccessToken("xxxxxx");

evsQuery.addSecurityToken(vocabularyName, token);

4. Call the evsSearch method defined in the ApplicationService class to query EVS.

List evsResults = (List)appService.evsSearch(evsQue ry);

5. The result objects are populated. The return type varies based on the search method
call set in the EVSQuery instance.

Examples of Use

Example One: Search for DescLogicConcepts by Term

1 public static void main(String[] args) {

caCORE EVS API 4.0 Technical Guide

44

2 try {

3 EVSApplicationService appService =

4 (EVSApplicationService)ApplicationSer viceProvider.

5 getApplicationService();

6 EVSQuery evsQuery = new EVSQueryImpl();

7 evsQuery.searchDescLogicConcepts("NCI_The saurus","blood*",10);

8 List evsResults = (List)appService.evsSea rch(evsQuery);

9

10 } catch(ApplicationException ex){

11 }

12

13 }

Lines Description
3 Creates an instance of a class that implements the ApplicationService interface;

this interface defines the service methods used to access data objects.

4 Creates a new EVSQuery object.

5 Specifies the search method and parameters. The searchDescLogicConcept
method performs a search in the "NCI_Thesaurus" vocabulary for a term that
starts with "blood" and returns a maximum of ten Concepts if found.

6 Calls the evsSearch method of the ApplicationService implementation passing
the EVSQuery object. This method returns a List Collection. The type of object
that is returned depends on the search parameters set in the EVSQuery object; in
this case the searchDescLogicConcept method was invoked, the resulting
objects are of type DescLogicConcept.

Example Two: Search MetaThesaurusConcepts by Atom

1 try {

2 EVSApplicationService appService =

 (EVSApplicationService)ApplicationServiceProvi der.

 getApplicationService();

3 EVSQuery evsQuery = new EVSQueryImpl();

4 evsQuery.searchSourceByAtomCode("10834-0","*");

5 List evsResults = (List)appService.evsSearch(evsQuery);

6 for(int m=0; m<evsResults.size(); m++){

7 MetaThesaurusConcept concept =

(MetaThesaurusConcept)evsResults.get(m);

 Chapter 5 Interacting with caCORE EVS

 45

8 System.out.println("\nConcept code: "+conc ept.getCui()

+"\n\t"+concept.getName());

9 List sList = concept.getSourceCollection() ;

10 System.out.println("\tSource-->" + sList.s ize());

11 for(int y=0; y<sList.size(); y++){

12 Source s = (Source)sList.get(y);

13 System.out.println("\t - "+s.getAbbrev iation());

21 }

14 List semanticList = concept.getSemanticTyp eCollection();

15 System.out.println("\tSemanticType---> cou nt ="+

semanticList.size());

16 for(int z=0; z<semanticList.size(); z++){

17 SemanticType sType = (SemanticType) sem anticList.get(z);

18 System.out.println("\t- Id: "+sType.get Id()+"\n\t- Name:

"+sType.getName());

19 }

20 List atomList = concept.getAtomCollection();

21 System.out.println("\tAtoms -----> count = "+ atomList.size());

22 for(int i=0;i<atomList.size(); i++){

23 Atom at = (Atom)atomList.get(i);

24 System.out.println("\t -Code: "+ at.ge tCode()+" -Name: "+

at.getName()

25 +" -LUI: "+ at.getLui()+" -Source : "+

at.getSource().getAbbreviation());

26 }

27 List synList = concept.getSynonymCollectio n();

28 System.out.println("\tSynonyms -----> coun t = "+

synList.size());

29 for(int i=0; i< synList.size(); i++){

30 System.out.println("\t - "+ (String) s ynList.get(i));

31 }

32 }

33 } catch(ApplicationException ex){

34

caCORE EVS API 4.0 Technical Guide

46

35 }

Lines Description

2 Creates an instance the EVSApplicationService.

3 Creates a new EVSQuery object.

4 Specifies the search method and parameters. The searchSourceByAtomCode
method performs a search on all the sources specified in the MetaThesaurus for
MetaThesaurusConcepts that has an Atom code value "10834-0 ". The source
abbreviation specified is "*"; therefore all sources are searched for the Atom spec-
ified.

5 Calls the evsSearch method of the EVSApplicationService implementation passing
the EVSQuery object. This method returns a List Collection. The type of object that
is returned depends on the search parameters set in the EVSQuery object; in this
case the searchSourceByAtomCode method was invoked, the resulting objects are
of type MetaThesaurusConcept.

6 Traverse through the result set.

7 Cast the result object to a MetaThesaurusConcept.

6-31 Prints the attributes and association values of the MetaThesaurusConcept.

Web Services API
The caCORE EVS Web services API allows access to caCORE EVS data from
development environments where the Java API cannot be used, or where use of XML Web
services is more desirable. This includes non-Java platforms and languages such as Perl, C/
C++,.NET Framework (C#, VB.Net), Python, etc.

The caCORE EVS Web services API allows access to vocabulary data from development
environments where the Java API cannot be used, or where use of XML Web services is
more desirable. This includes non-Java platforms and languages such as Perl, C/ C++,.NET
Framework (C#, VB.Net), Python, etc.

The Web services interface can be used in any language-specific application that provides a
mechanism for consuming XML Web services based on the Simple Object Access Protocol
(SOAP). In these environments, connecting to caCORE EVS can be as simple as providing
the endpoint URL. Some platforms and languages require additional client-side code to
handle the implementation of the SOAP envelope and the resolution of SOAP types. A list of
packages catering to different programming languages is available at
http://www.w3.org/TR/SOAP/ and at http://www.soapware.org/. To maximize standards-
based interoperability, the caCORE Web service conforms to the Web Services
Interoperability Organization (WS-I) Basic Profile. The WS-I Basic Profile provides a set of
non-proprietary specifications and implementation guidelines enabling interoperability
between diverse systems. More information about WS-I compliance is available at
http://www.ws-i.org. On the server side, Apache Axis is used to provide SOAP-based inter-
application communication. Axis provides the appropriate serialization and deserialization
methods for the Java beans to achieve an application-independent interface. For more
information about Axis, visit http://ws.apache.org/axis/.

 Chapter 5 Interacting with caCORE EVS

 47

Configuration

The caCORE/EVS WSDL file is located at
http://evsapi.nci.nih.gov/evsapi40/services/evsapi40Service?wsdl . In addition to describing
the protocols, ports and operations exposed by the caCORE EVS Web service, this file can
be used by a number of IDEs and tools to generate stubs for caCORE EVS objects. This
allows code on different platforms to instantiate objects native to each for use as parameters
and return values for the Web service methods. Consult the specific documentation for your
platform for more information on how to use the WSDL file to generate class stubs. The
caCORE EVS Web services interface has a single endpoint called evsapiService, which is
located at http://evsapi.nci.nih.gov/evsapi40/services/evsapi40Service. Client applications
should use this URL to invoke Web service methods.

Operations

Through the caCOREService endpoint, developers have access to three operations:

Operation getVersion

Input Schema None

Output Schema <complexType>

<sequence>

<element type="xsd:string"/>

</sequence>

</complexType>

Description Returns an xsd:string containing the version of
the running caCORE system (e.g., "caCORE
4.0")

Operation queryObject

Input Schema <complexType>

<sequence>

<element name="in0"
type="xsd:str ing"/> <element
name="in1"
type="xsd:anyType"/>

</sequence>

</complexType>

Output Schema <sequence>

<element name="queryReturn"type=
"ArrayOf_xsd_anyType"/>

</sequence>

Description Performs a search for objects conforming to the
criteria defined by input parameter in1 and whose
resulting objects are of the type reached by
traversing the node graph specified by parameter

caCORE EVS API 4.0 Technical Guide

48

in0 ; the result is a set of serialized objects (the
type ArrayOf_xsd_anyType resolves to a
sequence of xsd:anyType elements)

Operation Query

Input Schema <complexType>

<sequence>

<element name="in0"
type="xsd:string"/> <element
name="in1"
type="xsd:anyType"/> <element
name="in2" type="xsd:int"/>
<element name="in3"
type="xsd:int"/>

</sequence>

</complexType>

Output Schema <sequence>

<element name="queryReturn"
type="ArrayOf_xsd_anyType"/>

</sequence>

Description Identical to the previous queryObject method, but
allows for control over the result set by specifying
the row number of the first row (in2) and the
maximum number of objects to return (in3)

Developers should be aware of a significant behavioral decision that has been made
regarding the Web services interface. When a query is performed with this interface,
returned objects do not contain or refer to their associated objects (a notable exception is
with the EVS domain model-see below). This means that a separate query invocation must
be performed for each set of associated objects that need to be retrieved. One of the
examples below demonstrates this functionality.

Considerations

The EVS domain objects are unique in the way they are used with the Web services
interface. EVS classes that can be queried from Web services always provide associations
to their related objects. This enables access to the objects that are not of type
DescLogicConcept, MetaThesaurusConcept, or HistoryRecord.

Because of the unique behavior and properties of the EVS domain model, queries using the
Web services interface can be performed only on the selected attribute values listed in
Table 5-5.

Class Available search attributes
Name DescLogicConcept

code

 Chapter 5 Interacting with caCORE EVS

 49

Class Available search attributes

Property name and value

Role name and value

Name

cui (concept unique identifier)

MetaThesaurus Concept

Atom code and Source abbreviation

HistoryRecord DescLogicConcept name or code (HistoryRecord
is the targetObject and the DescLogicConcept is
the criteriaObject)

Table 5-5 Allowable attributes for searching the EVS domain model

Examples of Use

Example One: Simple Search (NCI Thesaurus)

The following code demonstrates a simple query written in the Java language that uses the
Web services API. This example uses Apache Axis on the client side to handle the type
mapping, SOAP encoding, and operation invocation.

1 try {
2 String endpointURL

"http://evsapi.nci.nih.gov/evsapi40/services/evsapi 40Service";
3 String methodName = "queryObject";
4 Service service = new Service();
5 Call call = (Call) service.createCall();
6
7 call.setTargetEndpointAddress(new java.net. URL(endpointURL));
8 call.setOperationName(new QName("EVSService ", "queryObject"));
9 call.addParameter("arg1",

org.apache.axis.encoding.XMLType.XSD_STRING, Parame terMode.IN);
10 call.addParameter("arg2",

org.apache.axis.encoding.XMLType.XSD_ANYTYPE, Param eterMode.IN);
11 call.setReturnType(org.apache.axis.encoding .XMLType.SOAP_ARRAY);
12
13 QName qnDLCArr = new QName("urn:domain.evs. nci.nih.gov",

"ArrayOf_tns1_DescLogicConcept");
14 call.registerTypeMapping(DescLogicConcept.c lass, qnDLCArr,
15 new org.apache.axis.encoding.ser.BeanSe rializerFactory(),
16 new org.apache.axis.encoding.ser.BeanDeser ializerFactory());
17
18 DescLogicConcept dlc = new DescLogicConcept ();
19 dlc.setName("ear*");
20
21 call.setReturnType(qnDLCArr);
22
23 Object thesarusParams = new

Object[]{"gov.nih.nci.evs.domain.DescLogicConcept", dlc};
24 DescLogicConcept[] dlcs =

(DescLogicConcept[])call.invoke(thesaurusParams);

caCORE EVS API 4.0 Technical Guide

50

25
26 char counter = 'a';
27
28 for (DescLogicConcept d: dlcs) {
29 System.out.println("\t" + counter + ") Concept name; " +

d.getName());
30 System.out.println("\t code: " + d.getC ode());
31 System.out.println("\t ---------------- ------------------");
32 counter++;
33 }
34 System.out.println("\tNumber of items retur ns from Thesaurus " +

dlcs.length);
35 } catch (Exception ex) {
36 System.out.println(ex.getMessage());
37 }

Lines Description
4 – 5 Defines a new Web Service Call

6-9, 20 Sets the call properties including the name of the operation to
invoke, the target property address, the input parameters that will
be sent and the return type

12 – 15 Maps a serialized object to it’s java equivalent using the qualified
name of the object from the WSDL file; in this case, the XML
element urn:domain.evs.nci.nih.gov namespace is mapped to the
Java DescLogicConcept Array

17 – 18 Creates a DescLogicConcept and sets the name attribute to
“ear*”.

22- 23 Invokes the Web Service operation using an array of two objects
(target class name and criteria object) as input parameters and
expecting an object array as its result.

26 Cast each object in the result array to type DescLogicConcept and
print

Example Two: EVS Domain Search (NCI MetaThesaurus)

The code below demonstrates use of the Web Services interface to query data from the NCI
MetaThesaurus using EVS domain objects.

1 try {
2 String endpointURL =

"http://evsapi.nci.nih.gov/evsapi40/services/evsapi 40Service";
3 String methodName = "queryObject";
4 Service service = new Service();
5 Call call = (Call) service.createCall();
6
7 call.setTargetEndpointAddress(new java.net. URL(endpointURL));
8 call.setOperationName(new QName("EVSService ", "queryObject"));
9 call.addParameter("arg1",

org.apache.axis.encoding.XMLType.XSD_STRING, Parame terMode.IN);
10 call.addParameter("arg2",

org.apache.axis.encoding.XMLType.XSD_ANYTYPE, Param eterMode.IN);
11 call.setReturnType(org.apache.axis.encoding .XMLType.SOAP_ARRAY);
12

 Chapter 5 Interacting with caCORE EVS

 51

13 QName qnMTCArr = new QName("urn:domain.evs. nci.nih.gov",
"ArrayOf_tns1_MetaThesaurusConcept");

14 call.registerTypeMapping(MetaThesaurusConce pt.class, qnMTCArr,
15 new org.apache.axis.encoding.ser.BeanSe rializerFactory(),
16 new org.apache.axis.encoding.ser.BeanDeser ializerFactory());
17
18 MetaThesaurusConcept mtc = new MetaThesauru sConcept();
19 MTC.setName("blood*");
20
21 call.setReturnType(qnMTCArr);
22
23 Object metaParams = new

Object[]{"gov.nih.nci.evs.domain.MetaThesaurusConce pt", mtc};
24 MetaThesaurusConcept[] meta = null;
25
25 try {
26 meta = (MetaThesaurusConcept[])call.invoke (metaParams);
26 char counter = 'a';
27
28 for (MetaThesaurusConcept m: meta) {
29 System.out.println("\t" + counter + ") Concept name; " +

m.getName());
30 System.out.println("\t code: " + m. getCui());
31 System.out.println("\t ------------ ----------------------

");
32 counter++;
33 }
34 System.out.println("\tSize" + meta.leng th);
35 } catch (Exception ex) {
36 System.out.println("Error: " + ex);
37 }
38 } catch (Exception ex) {
39 System.out.println(ex.getMessage());
40 }

Lines Description
4 – 5 Defines a new Web Service Call

6-9, 18 Sets the call properties including the name of the operation to
invoke, the target property address, the input parameters that will
be sent and the return type

11 – 14 Maps a serialized object to it’s java equivalent using the qualified
name of the object from the WSDL file; in this case, the XML
element urn:domain.evs.nci.nih.gov namespace is mapped to the
Java MetaThesaurusConcept Array

16 – 17 Creates a MetaThesaurusConcept and sets the name attribute to
“blood*”.

23 Invokes the Web Service operation using an array of two objects
(target class name and criteria object) as input parameters and
expecting an object array as its result.

25 Cast each object in the result array to type
MetaThesaurusConcept and print

caCORE EVS API 4.0 Technical Guide

52

Limitations

By default, the queryObject operation limits the result set to 1000 objects, even if the size of
the result set is larger. To retrieve the objects past the 1000th record, you must use the
query operation and specify the first object index (parameter in2) to be greater than 1000.

Result sets serialized and returned by the Web services interface do not currently include
associations to related objects. A consequence of this behavior is that nested criteria objects
with one-to-many associations that are passed to the query or queryObject operations will
result in an exception being thrown.

Because the Web services invocation has an inherent timeout behavior, queries that take a
long time to execute may not complete. If this is the case, use the query method to specify a
smaller result count.

Access to the EVS domain model is limited by the Web services interface, as shown in the
following table (Table 5-6).

Typical Behavior EVS Model Behavior

Can query for any object in the object
model

Can query only for a DescLogicConcept, HistoryRecord
or a MetaThesaurusConcept

The association values of the caCORE
domain objects are not populated;
need to run a second query to get
associated values

All attributes of the result object are populated

Can perform queries on any attribute
value

Queries can be performed only on selected attribute
values (see Table 5-4)

Table 5-6 Access to the EVS domain model

XML‐HTTP API
The caCORE EVS XML-HTTP API, based on the REST (Representational State Transfer)
architectural style, provides a simple interface using the HTTP protocol. In addition to its
ability to be invoked from most internet browsers, developers can use this interface to build
applications that do not require any programming overhead other than an HTTP client. This
is particularly useful for developing web applications using AJAX (asynchronous JavaScript
and XML).

Service Location and Syntax

The caCORE EVS XML-HTTP interface uses the following URL syntax (Table 5-7):

http://{server}/{servlet}?query={returnClass}&{crit eria}&

resultCounter={counter}&startIndex={index}&

pageSize={pageSize}&pageNumber={pageNumber}

 Chapter 5 Interacting with caCORE EVS

 53

Table 5-7 URL syntax used by the caCORE EVS XML‐HTTP interface

The caCORE EVS architecture currently provides two servlets that accept incoming
requests:

• GetXML returns results in an XML format that can be parsed and consumed by most
programming languages and many document authoring and management tools.

Element Meaning Required Example

server Name of the web server on which
caCORE EVS 4.0 web application
is deployed.

Yes evsapi.nci.nih.gov/evsapi40

servlet URI and the name of the servlet
that will accept the HTTP GET
requests

Yes evsapi40 /GetXML

evsapi40 /GetHTML

returnClass Class name indicating the type of
objects that this query should
return

Yes query=DescLogicConcept

criteria Search request criteria describing
the requested objects

Yes DescLogicConcept [@id=2]

counter Number of top level objects
returned by the search

No resultCounter=500

index Start index of the result set No startIndex=25

pageSize Number of records to display on
each "page

No pageSize=50

pageNumber The number of the "page" for
which to display results

No pageNumber=3

caCORE EVS API 4.0 Technical Guide

54

• GetHTML presents result using a simple HTML interface that can be viewed by most
modern Internet browsers.

Within the request string of the URL, the criteria element specifies the search criteria using
XQuery-like syntax. Within this syntax, square brackets ("[" and "]") represent attributes and
associated roles of a class, the "at" symbol ("@") signals an attribute name/value pair, and a
forward slash character ("/") specifies nested criteria. Criteria statements within XML-HTTP
queries are generally of the following forms (although more complex statements can also be
formed):

{ClassName}[@{attributeName}={value}] [@{attributeN ame}={value}]…

ClassName}[@{attributeName}={value}]/

{ClassName}[@{attributeName}={value}]/…

Parameter Meaning Example

ClassName The name of a class DescLogicConcept

attributeName The name of an attribute of the return class
or an associated class

name

value The value of an attribute ear*

Table 5-8 Criteria statements within XML-HTTP queries

Examples of Use

The following examples demonstrate use of the XML-HTTP interface. In actual use, the
queries shown here would either be submitted by a block of code or entered in the address
bar of an Internet browser. Also note that the servlet name GetXML in each of the examples
can be replaced with GetHTML to view with layout and markup in a browser.

Query http://evsapi.nci.nih.gov/evsapi40/GetXML?query=DescLogicConcept[n
ame=blood*]

Semantic
Meaning

Find all objects of type DescLogicConcept whose name starts with
‘blood’

Biological
Meaning

Find all concepts the refer to blood

Working With Result Sets

Because HTTP is a stateless protocol, the caCORE EVS server has no knowledge of the
context of any incoming request. Consequently, each invocation of GetXML or GetHTML
must contain all of the information necessary to retrieve the request, regardless of previous
requests. Developers should consider this when working with the XML-HTTP interface.

Retrieving Related Results using XLinks

When using the GetXML servlet to retrieve results as XML, associations between objects
are converted to XLinks within the XML. The link notation, shown below, allows the client to
make a subsequent request to retrieve the associated objects.

 Chapter 5 Interacting with caCORE EVS

 55

<class name="gov.nih.nci.evs.domain.DescLogicConcep t" recordNumber="1">

…

<field name="Vocabulary"

xlink:type="simple"

xlink:href="http://evsapi.nci.nih.gov/evsapi40/GetX ML?

Query=Vocabulary&DescLogicConcept[@id=5]"> getVocab ulary

</field>

…

</class>

Controlling the Number of Items Returned

The GetXML servlet provides a throttling mechanism to allow developers to define the
number of results returned on any single request and where in the result set to start. For
example, if a search request yields 500 results, specifying resultCounter=450 will return only
the last 50 records. Similarly, specifying startIndex=50 will return only the first 50 records.

Paging Results

In addition to controlling the number of results to display, the GetXML servlet also provides a
mechanism to support "paging". This concept, common to many web sites, allows results to
be displayed over a number of pages, so that, for example, a request that yields 500 objects
could be displayed over 10 pages of 50 objects each. When the paging feature is used, the
GetXML servlet will include XLinks to each of the result pages in an XML <page/> element.
The element data of the <page/> element is the number of the page, suitable for output as
text or HTML when using an XSL stylesheet:

<page number="1"

xlink:type="simple"

xlink:href="http://evsapi.nci.nih.gov/evsapi40/GetX ML?query={query}&

pageNumber=4&resultCounter=1000&startIndex=0"> 4

</page>

caCORE EVS API 4.0 Technical Guide

56

Limitations

When specifying attribute values in the query string, use of the following characters
generates an error: [] / \ # & %.

Utility Methods

XML Utility

caCORE (as accessible through the SDK framework) provides a utility (XMLUtility class) in
the gov.nih.nci.common.util package that provides the capability of converting caCORE EVS
domain objects between native Java objects and XML serializations based on standard XML
schemas. The XML schemas for all domain objects in caCORE EVS, directly generated
from the UML model (described earlier), are included in the downloadable archive (in the lib
directory). Currently, the XML generated using the XMLUtility class includes only the object
attributes; associated objects are not included.

Properties used by the XML utility are included in two files. The first, xml.properties, defines
some basic information needed by the class and also contains a property defining the
filename of the second. This second file, called xml-mapping.xml by default, defines the
binding between class and attribute names and the corresponding XML element and
attribute names.

A default marshaller and unmarshaller are provided with the caCORE EVS client;
developers wishing to use their own should provide the fully-qualified name of the two
classes in the xml.properties file.

In the following code, the XML utility is used to serialize an object and save it to a file
stream. A new object is then instantiated from the file using the utility.

1 ApplicationService appService =

ApplicationServiceProvider.getApplicationService();

2

3 Marshaller marshaller = new caCOREMarshaller("xml -mapping.xml", false);

4 Unmarshaller unmarshaller = new caCOREUnmarshalle r("unmarshaller-xml-

mapping.xml", false);

5 XMLUtility myUtil = new XMLUtility(marshaller, un marshaller);

6 Class klass = Vocabulary.class;

7 Object o = klass.newInstance();

8 System.out.println("Searching for "+klass.getName ());

9 try {

10 Collection results = appService.search(klass , o);

11 for(Object obj : results) {

12 File myFile = new File("./output/" + klass.getN ame() +

"_test.xml");

 Chapter 5 Interacting with caCORE EVS

 57

13

14 FileWriter myWriter = new FileWriter(myFile);

15 myUtil.toXML(obj, myWriter);

16 myWriter.close();

17 printObject(obj, klass);

18 DocumentBuilder parser = DocumentBuilderFactor y

19 .newInstance().newDocumentBuilder();

20 Document document = parser.parse(myFile);

21 SchemaFactory factory = SchemaFactory

22 .newInstance(XMLConstants.W3C_XML_SCHEMA_NS_UR I);

23

24 try {

25 System.out.println("Validating " + klass.g etName() +

26 " against the schema......\n\n");

27 Source schemaFile = new StreamSource(

28 Thread.currentThread().getContextClassLoader().

getResourceAsStream(

29 klass.getPackage().getName() + ".xsd"));

30 Schema schema = factory.newSchema(schemaFi le);

31 Validator validator = schema.newValidator();

32

33 validator.validate(new DOMSource(document));

34 System.out.println(klass.getName() + " has been

validated!!!\n\n");

35 } catch (Exception e) {

36 System.out.println(klass.getName() +

37 " has failed validation!!! Error reason is: \n \n" +

e.getMessage());

38 }

39

40 System.out.println("Un-marshalling " + klass.ge tName() + " from "

+

41 myFile.getName() +"......\n\n");

42 Object myObj = (Object) myUtil.fromXML(myFile) ;

caCORE EVS API 4.0 Technical Guide

58

43

44 printObject(myObj, klass);

45 myWriter.close();

46 break;

47 }

48 } catch(Exception e) {

49 System.out.println("Exception caught: " + e.g etMessage());

50 e.printStackTrace();

51 }

Lines Description

1 Instantiate the EVSApplicationService

3-5 Instantiate the marshaller and unmarshaller using the appropriate mapping files
and use to instantiate the XMLUtility

10 Perform a Search against the Vocabulary class

11 Iterate through all of the returned results

12 Instantiate a new xml file based on the search class

14-17 Use the XML utility to convert the returned object to XML and write to the output
stream

18-38 Validate the generated XML file

40-51 Unmarshall the generated XML object from the writen file and print to
System.out

Distributed LexBIG API

Overview

caCORE EVS is making a gradual transition towards a pure LexBIG backend terminology
server and exposure of the LexBIG Service object model in place of the existing EVS 3.2
object model. caCORE 3.2 and earlier required a custom API to sit between external users
of the system and the proprietary Apelon Terminology Server APIs. With the transition to
LexBIG, caCORE EVS can publicly expose the open source terminology service API without
the requirement of a custom API layer.

To allow users of caCORE EVS 3.2 and earlier to begin to prepare for transition to the
LexBIG API, caCORE EVS 4.0 provides a Distributed LexBIG (DLB) API in addition to the
EVS API (based on the 3.2 object model). The DLB API provides remote access to the
LexBIG API residing on the caCORE EVS server.

Architecture

The LexBIG API is exposed by the EVS caCORE System for remote, distributed access
(Figure 5-5). The caCORE System’s ‘EVSApplicationService’ class implements the

 Chapter 5 Interacting with caCORE EVS

 59

‘LexBIGService’ interface, effectively exposing LexBIG via caCORE. Since the objects
returned from the LexBIGService are not merely beans, but full fledged Data Access
Objects (DAOs) in many cases, the caCORE EVS client is configured to proxy method calls
into the LexBIG objects and forward them to the caCORE server so that they execute within
the LexBIG environment.

Figure 5-5 DLB Architecture

The DLB environment will be configured on the caCORE EVS Server
(http://evsapi.nci.nih.gov/evsapi40). This will give the server access to the LexBIG database
and other resources. The client must therefore go through the caCORE EVS server to
access any LexBIG data.

LexBIG Annotations

To deal with LexBIG DAOs, integration of the LexBIG API incorporated the addition of Java
Annotations marking methods that are safe to execute on the client side and classes that
may be passed to the client without being wrapped by a proxy. The annotation is named
@lgClientSideSafe. Every method in the LexBIG API that has been made accessible to the
caCORE EVS user had to be considered and annotated if necessary.

Aspect Oriented Programming Proxies

LexBIG integration with caCORE EVS was accomplished using Spring Aspect Oriented
Programming (AOP) to proxy the LexBIG classes and intercept calls to their methods
(Figure 5-6). The caCORE EVS Client wraps every object returned by the LexBIGService
inside an AOP Proxy with advice from a LexBIGMethodInterceptor (“the Interceptor”).

The “Interceptor” is responsible for intercepting all client calls on the methods in each object.
If the method is marked with the @lgClientSideSafe annotation, it proceeds normally.
Otherwise, the object, method name and parameters will are sent to the caCORE EVS
server for remote execution.

caCORE EVS API 4.0 Technical Guide

60

Figure 5-6 Sequence Diagram Showing Method Interception

Once the method is executed remotely, the result is delivered back to the client. If the result
is a LexBIG class (i.e. part of the org.LexGrid package) then the Interceptor checks for the
@lgClientSideSafe annotation on the resulting class. If the annotation is not found, the class
is wrapped in a proxy so that calls to its methods are also remote if necessary.

LexBIG API Documentation

The LexBIG 2.1.1 API was written by the Mayo Clinic. Documentation describing the
LexBIG Service Model is available on the LexGRID Vocabulary Services for caBIG GForge
site (https://gforge.nci.nih.gov/frs/?group_id=14).

LexBIG Installation and Configuration

The DLB API is strictly a Java interface and requires internet access for remote connectivity
to the caCORE EVS server.

In order to successfully access the DLB API, one needs access to the evsapi-client.jar
available for download on the NCICB website (EVS 3.2 Java API on page 35). The evsapi-
client.jar file needs to be available in the system classpath.

Example of Use

The following code sample shows use of the DLB API to retrieve the list of available coding
schemes in the LexBIG repository.

public class Test {
 /**
 * Intialize program variables
 */

 Chapter 5 Interacting with caCORE EVS

 61

 private String codingScheme = null;
 private String version = null;

 DLBAdapter adapter = null;
 LexBIGService lbSvc;

 public Test(String codingScheme, String version)
 {
 // Set the EVS URL (for remote access)

String evsUrl ="http://evsapi.nci.nih.gov/evsapi40/ http/
remoteService";

 boolean isRemote = true;
 this.codingScheme = codingScheme;
 this.version = version;

 // Get the LexBIG service reference from EVS App lication Service
 lbSvc = EVSApplicationService.getRemoteInstance(evsUrl);

 // Set the vocabulary to work with
 Boolean retval = adapter.setVocabulary(codingSch eme);

 codingSchemeMap = new HashMap();
 try {
 // Get the LexBIG service reference from the RemoteServerUtil
 lbSvc = RemoteServerUtil.createLexBIGService ();

 // Using the LexBIG service, get the support ed coding schemes

CodingSchemeRenderingList csrl =
lbSvc.getSupportedCodingSchemes();

 // Get the coding scheme rendering

CodingSchemeRendering[] csrs =
csrl.getCodingSchemeRendering();

 // For each coding scheme rendering....
 for (int i=0; i<csrs.length; i++) {
 CodingSchemeRendering csr = csrs[i];

// Determine whether the coding scheme rendering is active
or not
Boolean isActive = csr.getRenderingDetail().
getVersionStatus().

 equals(CodingSchemeVersionStatus.ACTI VE);
 if (isActive != null && isActive.equals(Boolea n.TRUE)) {
 // Get the coding scheme summary
 CodingSchemeSummary css = csr.getCodingSch emeSummary();

 // Get the coding scheme formal name
 String formalname = css.getFormalName();

 // Get the coding scheme version
 String representsVersion = css.getRepresen tsVersion();

CodingSchemeVersionOrTag vt = new
CodingSchemeVersionOrTag();

 vt.setVersion(representsVersion);

caCORE EVS API 4.0 Technical Guide

62

 // Resolve coding scheme based on the formal name
 CodingScheme scheme = null;
 try {
 scheme = lbSvc.resolveCodingScheme(formalname , vt);
 if (scheme != null)
 {

codingSchemeMap.put((Object) formalname, (Object)
scheme);

 }
 } catch (Exception e) {
 // Resolve coding scheme based on the URN
 String urn = css.getCodingSchemeURN();
 try {
 scheme = lbSvc.resolveCodingScheme(u rn, vt);
 if (scheme != null)
 {

codingSchemeMap.put((Object) formalname, (Object)
scheme);

 }
 } catch (Exception ex) {
 String localname = css.getLocalName();
 // Resolve coding scheme based on th e local name
 try {
 scheme = lbSvc.resolveCodingScheme(localname , vt);
 if (scheme != null)
 {

codingSchemeMap.put((Object) formalname, (Object)
scheme);

 }
 } catch (Exception e2) {
 }

}
}

}
}

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Main
 */
 public static void main(String[] args)
 {
 String name = "NCI_Thesaurus";
 String version = "06.12d";

 // Instatiate the Test Class
 Test test = new Test(name, version);
 }
}

 Chapter 5 Interacting with caCORE EVS

 63

Distributed LexBIG Adapter
The DLB Adapter is an extension of the DLB API. It is a set of convenience methods to
simplify and/or make familiar, use of the DLB API. Access is achieved first through the EVS
API and the DLB API. The Javadocs for the DLB Adapter are available at
http://gforge.nci.nih.gov/frs/download.php/2704/evsapi4.0_JavaDocs.zip.

Example of Use

The DLB Adapter is designed with dual mode functionality: a direct interface to a local
installation of the LexBIG API (‘local’) or to be used as an additional layer to the NCI DLB
API (‘remote’). It is bundled as part of the evsapi-client.jar file and once this .jar file is in the
application classpath, the programmer can decide how he/she intends to interface with
LexBIG (locally or remotely). The code fragment below represents how to use DLB Adapter
in both local and remote modes.

public class Test {
 /**
 * Intialize program variables
 */
 private String codingScheme = null;
 private String version = null;

 DLBAdapter adapter = null;
 LexBIGService lbSvc;

 /**
 * Test Constructors
 */
 public Test(String codingScheme)
 {
 this.codingScheme = codingScheme;
 this.version = "";
 }

 public Test(String codingScheme, String version)
 {

 /**
 * Establish a reference to the EVS Productio n URL (remote access).
 */

String evsUrl =
"http://evsapi.nci.nih.gov/evsapi40/http/remoteServ ice";

 /**
 * Set the isRemote (LexBIG installation) var iable
 */
 boolean isRemote = true;
 this.codingScheme = codingScheme;
 this.version = version;

 /**

* The DLB Adapter allows you to connect to a co-loc ated/local
installation of LexBIG or a

 * remote installation of LexBIG.

caCORE EVS API 4.0 Technical Guide

64

 */
 if (isRemote)
 {
 lbSvc = EVSApplicationService.getRemoteInstanc e(evsUrl);
 adapter = new DLBAdapter((EVSApplicationSe rvice)lbSvc);

System.out.println("\n***************************** ***********************
*****************");
 System.out.println("\n***** Insta ntiate
EVSApplicationService *****");

System.out.println("\n***************************** ***********************
*****************");
 }
 else
 {

System.out.println("\n***************************** ***********************
*****************");
 System.out.println("\n***** Insta ntiate
LexBIGServiceImpl *****");

System.out.println("\n***************************** ***********************
*****************");
 adapter = new DLBAdapter();
 }

 /**
 * Set the vocabulary to the desired coding s cheme.
 */
 Boolean retval = adapter.setVocabulary(codingSchem e);
 }

 /**
 * testGetTree()
 */
 public void testGetTree()
 {
 String rootname = "C25218";
 boolean direction = true;
 int levels = -1;
 boolean isaflag = true;
 Vector rolenames = new Vector();
 rolenames.add("Technique_Has_Sample_Or_Specimen_An atomy");

 /**
 * Call the getTree() method passing:
 * 1. The root name
 * 2. The direction
 * 3. The number of levels of depth to return
 * 4. The valid rolenames
 */
 DefaultMutableTreeNode dmtn = adapter.getTree(root name,
 direction,
 levels,

 Chapter 5 Interacting with caCORE EVS

 65

 0,
 isaflag,
 rolenames);
 /**
 * Print the resulting tree.
 */
 adapter.printTree(resultFile, dmtn);
 }

 /**
 * testMetadata()
 */
 public void testMetadata()
 {

 /**
 * Set the name of the desired terminolog y
 */
 String urn = "NCI_Thesaurus";

 /**
 * Involke the getMetadataProperties() me thod passing the
terminoloy name (URN).
 * Returns a NameAndValue array.
 */
 NameAndValue[] nv_array = adapter.getMetadataP roperties(urn);

 /**
 * Loop through each returned array eleme nt and print the name
and content values.
 */
 for (int j=0; j<nv_array.length; j++)
 {
 NameAndValue nv = (NameAndValue) nv_array[j];
 System.out.println("CS: " + urn + " Metadata Name: " +
nv.getName() + " Metadata Value: " + nv.getConten t());
 }
 }

 /**
 * testMetadata()
 */
 public void testTreeTraversal(String codingSche meName)
 {

 /**
 * Get ALL root concepts
 */
 CodedEntry[] a = adapter.getRootConcepts();

 /**
 * Loop through each returned value and print .
 */
 for (int i=0; i<a.length; i++)
 {
 CodedEntry ce = (CodedEntry) a[i];

caCORE EVS API 4.0 Technical Guide

66

 printNode(ce, 0);
 }
 }

 /**
 * printNode()
 */
 public void printNode(CodedEntry ce, int level)
 {

 /**
 * Get the concept code for the coded entry
 */
 String code = ce.getConceptCode();

 /**
 * Get the subconcepts for the concept code
 */
 Vector subconcepts = adapter.getSubConcepts(code, true, true);

 /**
 * Loop through each of the subconcepts
 */
 for (int j=0; j<subconcepts.size(); j++)
 {
 String subconceptcode = (String) subconcepts.e lementAt(j);

 /**
 * Execute the findConceptByCode() metho d and print the node.
 */
 CodedEntry sub = adapter.findConceptByCode(sub conceptcode, false);
 printNode(sub, level+1);
 }
 }

 /**
 * testMeta()
 */
 public void testMeta()
 {
 adapter.setVocabulary("NCI MetaThesaurus");
 String code = "MTHU000096";
 String source = "LNC";

 /**
 * Get properties by code
 */
 Vector v = adapter.getPropertiesByCode("CL347198");

 /**
 * Find concepts with source code matching ...
 */
 Vector v = adapter.findConceptsWithSourceCodeMatc hing(source, code,
1);

 Chapter 5 Interacting with caCORE EVS

 67

 /**
 * Find coded entries with source code mat ching...
 */
 Vector v = adapter.findCodedEntriesWithSourceCode Matching("NCI
MetaThesaurus", "LNC", "MTHU000096", 1);
 if (v != null)
 {
 /**
 * Loop through each of the coded entr ies and print the
concept code and name.
 */
 for (int i=0; i<v.size(); i++)
 {
 CodedEntry ce = (CodedEntry) v.elementAt(i);
 System.out.println(ce.getConceptCode());
 }
 }
 }

 /**
 * testSearchConcepts()
 */
 public void testSearchConcepts()
 {
 int limit = 1000;
 String source = "MDR";
 boolean cui = false;
 boolean shortResult = false;
 boolean score = false;
 String scheme = "NCI MetaThesaurus";
 String s = "artery";

 try {

 /**
 * Search all concepts in the MetaThesau rus where the source is
MDR, the search term is 'artery'.
 */
 CodedEntry[] a = adapter.searchConcepts(sc heme, s, limit,
source, cui, shortResult, score);

 /**
 * Loop through each of the coded en tries and print the
concept code and name.
 */
 for (int i=0; i<a.length; i++)
 {
 CodedEntry ce = (CodedEntry) a[i];
 int j = i+1;
 System.out.println("(" + j +") " + ce.getConcept Code() + "[" +
adapter.getName(ce) + "]");
 }

 } catch (Exception e) {
 e.printStackTrace();

caCORE EVS API 4.0 Technical Guide

68

 }
 }
 }

 /**
 * Main
 */
 public static void main(String[] args)
 {
 String name = "NCI_Thesaurus";
 String version = "06.12d";

 // Instantialte the Test class
 Test test = new Test(name, version);

 // Eexcute the testGetTree() method
 test.testGetTree();

 // Eexcute the testSearchConcepts() method
 test.testSearchConcepts();

 // Eexcute the testMetadata() method
 test.testMetadata();

 }
}

 69

Appendix A References

Articles
1. The Description Logic Handbook. Franz Baader, et al. (eds.). Cambridge University

Press, 1993.

2. Artificial Intelligence. Patrick Winston. Addison-Wesley, 1984.

3. Artificial intelligence. Minsky M, Hillis D, Rudisch G. New England Journal of Medicine.
1980 Jun 26;302(26):1482.

4. Java Programming: http://java.sun.com/learning/new2java/index.html

5. Extensible Markup Language: http://www.w3.org/TR/REC-xml/

6. XML Metadata Interchange: http://www.omg.org/technology/documents/formal/xmi.htm

caBIG Material

1. caBIG: http://cabig.nci.nih.gov/

2. caBIG Compatibility Guidelines: http://cabig.nci.nih.gov/guidelines_documentation

caCORE Material

1. NCICB: http://ncicb.nci.nih.gov/NCICB/infrastructure

2. caCORE: http://ncicb.nci.nih.gov/NCICB/infrastructure

3. caBIO: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO

4. caDSR: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr

5. CSM: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

Software Products

1. Java: http://java.sun.com

2. Ant: http://ant.apache.org/

caCORE EVS API 4.0 Technical Guide

70

 71

Appendix B Additional Examples

This appendix provides two additional code examples.

• Find Tree For Concept and Association on this page
• Search MetaThesaurus for a Particular Concept/Search Term on page 74

Find Tree For Concept and Association
This example shows how to locate a particular concept node and given association in the
identified vocabulary hierarchy.

/*
 * Copyright: (c) 2004-2007 Mayo Foundation for Med ical Education and
 * Research (MFMER). All rights reserved. MAYO, MAY O CLINIC, and the
 * triple-shield Mayo logo are trademarks and servi ce marks of MFMER.
 *

* Except as contained in the copyright notice above , or as used to
identify

 * MFMER as the author of this software, the trade names, trademarks,
service

 * marks, or product names of the copyright holder shall not be used in
 * advertising, promotion or otherwise in connectio n with this software

without
 * prior written authorization of the copyright hol der.
 *
 * Licensed under the Eclipse Public License, Versi on 1.0 (the "License");
 * you may not use this file except in compliance w ith the License.
 * You may obtain a copy of the License at
 *
 * http://www.eclipse.org/legal/epl-v10.html
 *
 * Modified By: NCI CBIIT
 */

package org.LexGrid.LexBIG.example;

import org.LexGrid.LexBIG.DataModel.Collections.Ass ociationList;
import org.LexGrid.LexBIG.DataModel.Collections.Nam eAndValueList;
import
org.LexGrid.LexBIG.DataModel.Collections.ResolvedCo nceptReferenceList;
import org.LexGrid.LexBIG.DataModel.Core.Associated Concept;
import org.LexGrid.LexBIG.DataModel.Core.Associatio n;
import org.LexGrid.LexBIG.DataModel.Core.CodingSche meSummary;
import org.LexGrid.LexBIG.DataModel.Core.CodingSche meVersionOrTag;
import org.LexGrid.LexBIG.DataModel.Core.NameAndVal ue;
import org.LexGrid.LexBIG.DataModel.Core.ResolvedCo nceptReference;
import org.LexGrid.LexBIG.Exceptions.LBException;
import org.LexGrid.LexBIG.Impl.LexBIGServiceImpl;
import org.LexGrid.LexBIG.LexBIGService.LexBIGServi ce;
import org.LexGrid.LexBIG.LexBIGService.CodedNodeSe t.PropertyType;
import org.LexGrid.LexBIG.Utility.ConvenienceMethod s;
import org.LexGrid.commonTypes.EntityDescription;

caCORE EVS API 4.0 Technical Guide

72

import gov.nih.nci.system.applicationservice.*;

/**

* Example showing how to determine a branch of asso ciations, starting
from a

 * specific concept code.
 */
public class FindTreeForCodeAndAssoc {
 final static int MAX_DEPTH = 5;
 public FindTreeForCodeAndAssoc() {
 super();
 }

 /**
 * Entry point for processing.
 * @param args
 */
 public static void main(String[] args) {
 if (args.length < 2) {
 System.out.println(
 "Example: FindTreeForCodeAndAssoc \"C25762\" \" hasSubtype\"");
 return;
 };

 try {
 String code = args[0];
 String relation = args[1];
 new FindTreeForCodeAndAssoc().run(code, relation);
 } catch (Exception e) {
 Util.displayAndLogError("REQUEST FAILED !!!", e) ;
 }
 }

 public void run(String code, String rel)throws LBE xception{

String evsUrl =
"http://evsapi.nci.nih.gov/evsapi40/http/remoteServ ice";

 CodingSchemeSummary css = Util.promptForCodeSyste m();
 if (css != null) {
 LexBIGService lbSvc =
EVSApplicationService.getRemoteInstance(evsUrl);
 String scheme = css.getCodingSchemeURN();
 CodingSchemeVersionOrTag csvt = new CodingScheme VersionOrTag();
 csvt.setVersion(css.getRepresentsVersion());
 print(code, rel,0, lbSvc, scheme, csvt);
 }
 }

 /**
 * Handle one level of the tree, and recurse to th e maximum depth.
 * @param code
 * @param relation
 * @param depth
 * @param lbSvc
 * @param csvt
 * @param scheme
 * @param tagOrVersion

 Appendix B Additional Examples

 73

 * @throws LBException
 */
 protected void print(String code, String relation, int depth,
LexBIGService lbSvc, String scheme, CodingSchemeVer sionOrTag csvt) throws
LBException {
 // Perform the query ...
 NameAndValue nv = new NameAndValue();
 NameAndValueList nvList = new NameAndValueList();
 nv.setName(relation);
 nvList.addNameAndValue(nv);

 ResolvedConceptReferenceList matches =
 lbSvc.getNodeGraph(scheme, csvt, null)
 .restrictToAssociations(nvList, null)
 .resolveAsList(
 ConvenienceMethods.createConceptReference(code , scheme),
 true, false, 1, 1,
 null, new PropertyType[] {PropertyType.PRESENT ATION},
 null, 1024);

 // Analyze the result ...
 if (matches.getResolvedConceptReferenceCount() > 0) {
 ResolvedConceptReference ref =

(ResolvedConceptReference)
matches.enumerateResolvedConceptReference().nextEle ment();

 // Indent according to level
 StringBuffer sb = new StringBuffer();
 for (int i = 0; i < depth-1; i++)
 sb.append('\t');

 // Print the associations
 AssociationList sourceof = ref.getSourceOf();
 Association[] associations = sourceof.getAssocia tion();
 for (int i = 0; i < associations.length; i++) {
 Association assoc = associations[i];

AssociatedConcept[] acl =
assoc.getAssociatedConcepts().getAssociatedConcept();

 for (int j = 0; j < acl.length; j++) {
 // Print
 AssociatedConcept ac = acl[j];
 EntityDescription ed = ac.getEntityDescription ();
 Util.displayMessage(
 "\t\t" + ac.getConceptCode() + "/"
 + (ed == null?
 "**No Description**":ed.getContent()));

 // Recurse
 if (depth < MAX_DEPTH)

print(ac.getConceptCode(), relation, depth+1, lbSvc ,
scheme, csvt);

 }
 }
 }
 }
}

caCORE EVS API 4.0 Technical Guide

74

Search MetaThesaurus for a Particular Concept/Search Term
This example has been commonly used by the caDSR Team. It shows how to search the
Metathesaurus for a desired concept.

import java.io.File;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Enumeration;
import java.util.List;
import java.util.Vector;
import java.util.jar.JarEntry;
import java.util.jar.JarFile;

import gov.nih.nci.system.client.ApplicationService Provider;
import gov.nih.nci.system.applicationservice.*;
import gov.nih.nci.evs.query.*;
import gov.nih.nci.evs.domain.*;
import gov.nih.nci.evs.security.*;

public class TestcaDSR
{
 public static void main(String args[])
 {
 TestcaDSR client = new TestcaDSR();
 try
 {
 client.testSearch();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }

 public void testSearch() throws Exception
 {
 String termStr = "agent";
 int metaLimit=100;
 String metaSource = "*";

EVSApplicationService evsService =
(EVSApplicationService)ApplicationServiceProvider.g etApplicationServ
ice();

 try
 {
 EVSQuery evsQuery = new EVSQueryImpl();

evsQuery.searchMetaThesaurus(termStr, metaLimit, me taSource,
false, false, false);

 List metaResults = (List)evsService.evsSearch(ev sQuery);

 Appendix B Additional Examples

 75

 System.out.println("\n Running updated version.. ..");
 System.out.println("\n Results count = " + metaR esults.size());
 for (int i=0; i < metaResults.size(); i++) {

MetaThesaurusConcept metaConcept =
(MetaThesaurusConcept)metaResults.get(i);

 if (metaConcept != null) {
 String conceptName = metaConcept.getName();
 System.out.println("\n\t Concept Name = " + co nceptName);
 String conceptID = metaConcept.getCui();
 System.out.println("\n\t Concept ID = " + conc eptID);

ArrayList semantic =
metaConcept.getSemanticTypeCollection();
System.out.println("\n Semantic size = " +
semantic.size());

 for (int ii=0; ii < semantic.size(); ii++) {
System.out.println("\n\t Semantic = " +
(SemanticType)semantic.get(ii));

 }
 }
 }

 } catch(Exception e) {
 System.out.println(">>>"+e.getMessage());
 e.printStackTrace();
 }
 }

}

caCORE EVS API 4.0 Technical Guide

76

 77

Glossary

The following table contains a list of terms used in this document, with accompanying
definitions.

Term Definition

AJAX Asynchronous JavaScript and XML

AL Attributive Language description logic

BioPortal NCBO’s web browser for LexBIG

caBIG

caBIO Model and architecture that is the primary programmatic interface
to caCORE.

caCORE Cancer Common Ontologic Representation Environment

caDSR Metadata registry, based upon the ISO/IEC 11179 standard, used
to register the descriptive information needed to render cancer
research data reusable and interoperable.

CLM Common Logging Module. Provides a separate service under
caCORE for Audit and Logging Capabilities.

CSM Common Security Module. Provides a flexible solution for
application security and access control for caCORE.

CUI Concept Unique Identifier

CUI Concept Unique Identifier

DAML Agent Markup Language

DARPA Defense Advanced Research Projects Agency

DL Description Logic. Family of systems that is especially well suited
to the development of ontologies, taxonomies, and controlled
vocabularies.

DTS A proprietary server that does not allow exposure of the API.

EVS Enterprise Vocabulary Services project. A collaborative effort of the
NCI Center for Bioinformatics.

EVS Enterprise Vocabulary Services project. A collaborative effort of the
NCI Center for Bioinformatics.

FL Frame Language description logic

FOL First-Order Predicate Logic

GO Gene OntologyTM Consortium

caCORE EVS API 4.0 Technical Guide

78

Term Definition

ICD-O-3 Additional external vocabularies to NCI Metathesaurus.

IDE Integrated Development Environment

LexBIG Open source public domain terminology server LexBIG, developed
by the Mayo Clinic as part of the caBIG Program.

MDA Model Driven Architecture

MedDRA Additional external vocabularies to NCI Metathesaurus.

MO Native MGED Ontology is edited in OilEd and distributed in the
Defense Advanced Research Projects Agency, Agent Markup
Language + Ontology Inference Layer XML format.

NCBO National Center for Bioontologies

NCI
Metathesaurus

Based on NLM's Unified Medical Language System Metathesaurus
(UMLS) supplemented with additional cancer-centric vocabulary.

NCI Thesaurus A biomedical thesaurus developed by EVS in response to a need
for consistent shared vocabularies among the various projects and
initiatives at the NCI as well as in the entire cancer research
community.

NCICB NCI Center for Bioinformatics

OBO Open Biomedical Ontologies

OIL Ontology Inference Layer

OLLT Obsolete Lower Level Terms

OWL Web Ontology Language

RDF Resource Description Framework

RRF Rich Release Format

SDK caCORE Software Development Kit or caCORE SDK, a data
management framework designed for researchers who need to be
able to navigate through a large number of data sources. caCORE
SDK is NCICB's platform for data management and semantic
integration, built using formal techniques from the software
engineering and computer science communities.

SNOMED Additional external vocabularies to NCI Metathesaurus.

SOAP Simple Object Access Protocol

SOC System Organ Class

SSC Special Search Categories

SUI Each unique concept name or string in the Metathesaurus has a
String Unique Identifier.

 79

Term Definition

TDE Terminology Development Environment

UML Unified Modeling Language

UMLS NLM's Unified Medical Language System Metathesaurus

UMLS
Semantic
Network

An independent construct whose purpose is to provide consistent
categorization for all concepts contained in the UMLS
Metathesaurus, and to define a useful set of relationships among
these concepts.

W3C World Wide Web Consortium

XML Extensible Markup Language

caCORE EVS API 4.0 Technical Guide

80

 81

Index

A

Apelon DTS server, 21

C

caBIO

overview, 24

caCORE

architecture overview, 23

components, 24

caDSR

component of caCORE, 24

Client technologies, 28

Common Logging Module

caCORE component, 24

Common Security Module. See CSM

Concept edit history, 11

Controlled vocabularies

NCI Metathesaurus, 5

NCI Thesaurus, 5

CSM

caCORE component, 24

D

Data sources, 35

Description logic

defined, 9

NCI Thesaurus, 10

Domain object catalog, 34

Domain package, 29

Downloading

NCI Thesaurus, 12

E

Enterprise Vocabulary Services. See EVS

EVS

client tecnologies, 28

component of caCORE, 24

data sources, 35

domain object catalog, 34

Java API, 35

object model, 33

overview, 5

search paradigm, 40

software packages, 29

system architecture, 27

Web Services API, 46

XML-HTTP API, 52

EVS components, 31

EVSQuery

methods and parameters, 41

EVSQueryImpl, 41

Examples

additional LexBIG, 71

Java API installation, 38

LexBIG Adapter, 63

LexBIG API, 60

Web Services API, 49

J

Java API

installation and configuration, 35

installation verification example, 38

K

Knowledge representation, 7

L

LexBIG

overview, 21

LexBIG Adapter

description, 63

example, 63

LexBIG API

architecture, 58

aspect oriented programming proxies, 59

description, 58

example, 60

installation and configuration, 60

Lexbig package, 29

caCORE EVS API 4.0 Technical Guide

82

N

NCI Metathesaurus, 5

NCI Office of Commnunications, 5

NCI Thesaurus, 5

concept edit history, 11

description logic, 10

downloading, 12

OWL encoding, 14

NCICB, 5

O

Object model, 33

Ontylog mappings

Gene Ontology to Ontylog, 16

MedDRA to Ontylog, 18

MGED Ontology to Ontylog, 19

Ontylog name conversion, 15

OWL, 14

Q

Query package, 29

R

Resource Description Framework, 14

S

Search paradigm, 40

Software packages, 29

System package, 29

U

UMLS Metathesaurus, 5

Utility Methods

XML utility, 56

V

Vocabularies

accessing secured, 43

W

Web Services API

configuration, 47

Considerations, 48

description, 46

Examples, 49

Limitations, 52

Operations, 47

World Wide Web Consortium, 14

X

XML-HTTP API

description, 52

Examples, 54

service location and syntax, 52

working with results sets, 54

